Add model usage info
Browse files
README.md
CHANGED
|
@@ -103,6 +103,51 @@ As a baseline to compare `xlm-roberta-base-language-detection` against, we have
|
|
| 103 |
|vi |0.971 |0.990 |0.980 |500 |
|
| 104 |
|zh |1.000 |1.000 |1.000 |500 |
|
| 105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
## Training procedure
|
| 107 |
|
| 108 |
Fine-tuning was done via the `Trainer` API. Here is the [Colab notebook](https://colab.research.google.com/drive/15LJTckS6gU3RQOmjLqxVNBmbsBdnUEvl?usp=sharing) with the training code.
|
|
|
|
| 103 |
|vi |0.971 |0.990 |0.980 |500 |
|
| 104 |
|zh |1.000 |1.000 |1.000 |500 |
|
| 105 |
|
| 106 |
+
## How to get started with the model
|
| 107 |
+
|
| 108 |
+
The easiest way to use the model is via the high-level `pipeline` API:
|
| 109 |
+
|
| 110 |
+
```python
|
| 111 |
+
from transformers import pipeline
|
| 112 |
+
|
| 113 |
+
text = [
|
| 114 |
+
"Brevity is the soul of wit.",
|
| 115 |
+
"Amor, ch'a nullo amato amar perdona."
|
| 116 |
+
]
|
| 117 |
+
|
| 118 |
+
model_ckpt = "papluca/xlm-roberta-base-language-detection"
|
| 119 |
+
pipe = pipeline("text-classification", model=model_ckpt)
|
| 120 |
+
pipe(text, top_k=1, truncation=True)
|
| 121 |
+
```
|
| 122 |
+
|
| 123 |
+
Or one can proceed with the tokenizer and model separately:
|
| 124 |
+
|
| 125 |
+
```python
|
| 126 |
+
import torch
|
| 127 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 128 |
+
|
| 129 |
+
text = [
|
| 130 |
+
"Brevity is the soul of wit.",
|
| 131 |
+
"Amor, ch'a nullo amato amar perdona."
|
| 132 |
+
]
|
| 133 |
+
|
| 134 |
+
model_ckpt = "papluca/xlm-roberta-base-language-detection"
|
| 135 |
+
tokenizer = AutoTokenizer.from_pretrained(model_ckpt)
|
| 136 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_ckpt)
|
| 137 |
+
|
| 138 |
+
inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt")
|
| 139 |
+
|
| 140 |
+
with torch.no_grad():
|
| 141 |
+
logits = model(**inputs).logits
|
| 142 |
+
|
| 143 |
+
preds = torch.softmax(logits, dim=-1)
|
| 144 |
+
|
| 145 |
+
# Map raw predictions to languages
|
| 146 |
+
id2lang = model.config.id2label
|
| 147 |
+
vals, idxs = torch.max(preds, dim=1)
|
| 148 |
+
{id2lang[k.item()]: v.item() for k, v in zip(idxs, vals)}
|
| 149 |
+
```
|
| 150 |
+
|
| 151 |
## Training procedure
|
| 152 |
|
| 153 |
Fine-tuning was done via the `Trainer` API. Here is the [Colab notebook](https://colab.research.google.com/drive/15LJTckS6gU3RQOmjLqxVNBmbsBdnUEvl?usp=sharing) with the training code.
|