Sentence Similarity
	
	
	
	
	sentence-transformers
	
	
	
	
	PyTorch
	
	
	
	
	TensorBoard
	
	
	
	
	Transformers
	
	
	
		
	
	English
	
	
	
		
	
	German
	
	
	
	
	t5
	
	
	
	
	text-embedding
	
	
	
	
	embeddings
	
	
	
	
	information-retrieval
	
	
	
	
	beir
	
	
	
	
	text-classification
	
	
	
	
	language-model
	
	
	
	
	text-clustering
	
	
	
	
	text-semantic-similarity
	
	
	
	
	text-evaluation
	
	
	
	
	prompt-retrieval
	
	
	
	
	text-reranking
	
	
	
	
	feature-extraction
	
	
	
	
	English
	
	
	
	
	Sentence Similarity
	
	
	
	
	natural_questions
	
	
	
	
	ms_marco
	
	
	
	
	fever
	
	
	
	
	hotpot_qa
	
	
	
	
	mteb
	
	
	
		
	
	text-generation-inference
	
	
	Add short description and example for skill retrieval task
Browse files
    	
        README.md
    CHANGED
    
    | 
         @@ -2523,8 +2523,26 @@ model-index: 
     | 
|
| 2523 | 
         
             
                - type: max_f1
         
     | 
| 2524 | 
         
             
                  value: 78.39889075384951
         
     | 
| 2525 | 
         
             
            ---
         
     | 
| 
         | 
|
| 
         | 
|
| 2526 | 
         | 
| 2527 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 2528 | 
         
             
            We introduce **Instructor**👨🏫, an instruction-finetuned text embedding model that can generate text embeddings tailored to any task (e.g., classification, retrieval, clustering, text evaluation, etc.) and domains (e.g., science, finance, etc.) ***by simply providing the task instruction, without any finetuning***. Instructor👨 achieves sota on 70 diverse embedding tasks!
         
     | 
| 2529 | 
         
             
            The model is easy to use with **our customized** `sentence-transformer` library. For more details, check out [our paper](https://arxiv.org/abs/2212.09741) and [project page](https://instructor-embedding.github.io/)! 
         
     | 
| 2530 | 
         | 
| 
         | 
|
| 2523 | 
         
             
                - type: max_f1
         
     | 
| 2524 | 
         
             
                  value: 78.39889075384951
         
     | 
| 2525 | 
         
             
            ---
         
     | 
| 2526 | 
         
            +
            # pascalhuerten/instructor-skillfit
         
     | 
| 2527 | 
         
            +
            A finetuning of hkunlp/instructor-base specialized on performing retrival of relevant skills based on a given learning outcome.
         
     | 
| 2528 | 
         | 
| 2529 | 
         
            +
            ## Skill Retrieval
         
     | 
| 2530 | 
         
            +
            You can use **customized embeddings** for skill retrieval.
         
     | 
| 2531 | 
         
            +
            ```python
         
     | 
| 2532 | 
         
            +
            import numpy as np
         
     | 
| 2533 | 
         
            +
            from sklearn.metrics.pairwise import cosine_similarity
         
     | 
| 2534 | 
         
            +
            query  = [['Represent the learning outcome for retrieval: : ','WordPress installieren\nWebsite- oder Blogplanung\nPlugins und Widges einfügen']]
         
     | 
| 2535 | 
         
            +
            corpus = [['Represent the skill for retrieval: ','WordPress'],
         
     | 
| 2536 | 
         
            +
                      ['Represent the skill for retrieval: ','Website-Wireframe erstellen'],
         
     | 
| 2537 | 
         
            +
                      ['Represent the skill for retrieval: ','Software für Content-Management-Systeme nutzen']]
         
     | 
| 2538 | 
         
            +
            query_embeddings = model.encode(query)
         
     | 
| 2539 | 
         
            +
            corpus_embeddings = model.encode(corpus)
         
     | 
| 2540 | 
         
            +
            similarities = cosine_similarity(query_embeddings,corpus_embeddings)
         
     | 
| 2541 | 
         
            +
            retrieved_doc_id = np.argmax(similarities)
         
     | 
| 2542 | 
         
            +
            print(retrieved_doc_id)
         
     | 
| 2543 | 
         
            +
            ```
         
     | 
| 2544 | 
         
            +
             
     | 
| 2545 | 
         
            +
            ## hkunlp/instructor-base
         
     | 
| 2546 | 
         
             
            We introduce **Instructor**👨🏫, an instruction-finetuned text embedding model that can generate text embeddings tailored to any task (e.g., classification, retrieval, clustering, text evaluation, etc.) and domains (e.g., science, finance, etc.) ***by simply providing the task instruction, without any finetuning***. Instructor👨 achieves sota on 70 diverse embedding tasks!
         
     | 
| 2547 | 
         
             
            The model is easy to use with **our customized** `sentence-transformer` library. For more details, check out [our paper](https://arxiv.org/abs/2212.09741) and [project page](https://instructor-embedding.github.io/)! 
         
     | 
| 2548 | 
         |