pastells commited on
Commit
74ef372
·
1 Parent(s): d93f970

LunarLander model with PPO for RL tutorial

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 266.24 +/- 12.58
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6a689b3670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6a689b3700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6a689b3790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6a689b3820>", "_build": "<function ActorCriticPolicy._build at 0x7f6a689b38b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f6a689b3940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6a689b39d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6a689b3a60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6a689b3af0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6a689b3b80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6a689b3c10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6a689b3ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6a689b2b40>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673879122881173009, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIchb2tAM7cECUhpRSlIwBbJRNRgGMAXSUR0CTYNsvqTr3dX2UKGgGaAloD0MIrI4c6Qy/bkCUhpRSlGgVTTsBaBZHQJNhneQ+2Vp1fZQoaAZoCWgPQwhoQpPEEtBvQJSGlFKUaBVNYwFoFkdAk2HZ8KG+K3V9lChoBmgJaA9DCN5Zu+1CmU5AlIaUUpRoFUvtaBZHQJNiYe3hGYt1fZQoaAZoCWgPQwhpb/CFydtvQJSGlFKUaBVNGQFoFkdAk2S6w6hg3XV9lChoBmgJaA9DCPksz4O7B3JAlIaUUpRoFU1IAWgWR0CTZR8+RoysdX2UKGgGaAloD0MIdGIP7WOJcECUhpRSlGgVTWIBaBZHQJNlKMKkVN51fZQoaAZoCWgPQwgHI/YJIFZuQJSGlFKUaBVNIgFoFkdAk2WV1SwW33V9lChoBmgJaA9DCOuM74sLx3FAlIaUUpRoFU2xAWgWR0CTZie9zwMIdX2UKGgGaAloD0MIOzdtxqkbcECUhpRSlGgVTSYBaBZHQJNpwQBgeBB1fZQoaAZoCWgPQwgSoRFsnC9xQJSGlFKUaBVNdAFoFkdAk2pIoJAt4HV9lChoBmgJaA9DCHNoke28bXBAlIaUUpRoFU0vAWgWR0CTbAIfbKzSdX2UKGgGaAloD0MI2c9iKVLncECUhpRSlGgVTVQBaBZHQJNsPTmW+oN1fZQoaAZoCWgPQwgo1NNHIFhzQJSGlFKUaBVNswFoFkdAk21L3PAwf3V9lChoBmgJaA9DCLeb4JsmcW1AlIaUUpRoFU1+AWgWR0CTbYF+uvECdX2UKGgGaAloD0MIur4PB8lMcECUhpRSlGgVTVMBaBZHQJNun8DSw4d1fZQoaAZoCWgPQwjyXN+HQ4lwQJSGlFKUaBVNGQFoFkdAk284ekpI+XV9lChoBmgJaA9DCAytTs7QSWxAlIaUUpRoFU0lAWgWR0CTcCY4yXUpdX2UKGgGaAloD0MILNSa5t2mcUCUhpRSlGgVTeABaBZHQJNwL8yeqaR1fZQoaAZoCWgPQwhe1y/YjUhtQJSGlFKUaBVNFgFoFkdAk4OUWVNYbXV9lChoBmgJaA9DCAPqzai5MnBAlIaUUpRoFU0sAWgWR0CTg6ZlnRLLdX2UKGgGaAloD0MI9G4sKIyRcECUhpRSlGgVTc0BaBZHQJOD3vAoG6h1fZQoaAZoCWgPQwj4GRcOhHxuQJSGlFKUaBVNwwFoFkdAk4SKEnLJS3V9lChoBmgJaA9DCMcTQZyH329AlIaUUpRoFU0lAWgWR0CThxkjopx4dX2UKGgGaAloD0MIoTAo06jecUCUhpRSlGgVTT4BaBZHQJOIg2MsH0N1fZQoaAZoCWgPQwiVKeYgqEJwQJSGlFKUaBVN+wFoFkdAk4oUJKJ2uHV9lChoBmgJaA9DCEnajT6mCHFAlIaUUpRoFU1KAWgWR0CTio+6y0KJdX2UKGgGaAloD0MIzjeie1aabkCUhpRSlGgVTUcBaBZHQJOLjCLuQZJ1fZQoaAZoCWgPQwgb1elA1stuQJSGlFKUaBVNHwFoFkdAk4v4E4ecQXV9lChoBmgJaA9DCKeVQiCXZGxAlIaUUpRoFU1cAWgWR0CTjIZMtbs4dX2UKGgGaAloD0MIEjKQZxdpbECUhpRSlGgVTSIBaBZHQJOM9RuTA311fZQoaAZoCWgPQwh0Ka4qO7VyQJSGlFKUaBVNKwFoFkdAk44LK3d9D3V9lChoBmgJaA9DCORLqOBw5HJAlIaUUpRoFU1NAWgWR0CTjy1X/5tWdX2UKGgGaAloD0MIDmYTYNjeb0CUhpRSlGgVTUMBaBZHQJOPLnjhky11fZQoaAZoCWgPQwh8YwgAjvVgQJSGlFKUaBVN6ANoFkdAk5F50r9VFXV9lChoBmgJaA9DCLq7zob8pXJAlIaUUpRoFU2wAWgWR0CTkfMjeKsNdX2UKGgGaAloD0MIsVBrmvemckCUhpRSlGgVTTACaBZHQJOS9h5PdmB1fZQoaAZoCWgPQwghsHJoEcJwQJSGlFKUaBVNNQFoFkdAk5PDZDiOvXV9lChoBmgJaA9DCOBNt+zQYXBAlIaUUpRoFU1UAmgWR0CTlqF3pwCKdX2UKGgGaAloD0MIusDlsSb2cECUhpRSlGgVTV4BaBZHQJOW6l9Brvd1fZQoaAZoCWgPQwihoupX+vxxQJSGlFKUaBVNBwJoFkdAk5c65TZQHnV9lChoBmgJaA9DCLgf8MCA0XFAlIaUUpRoFU07AWgWR0CTl30UGmk4dX2UKGgGaAloD0MIyVUsftOfcECUhpRSlGgVTUMBaBZHQJOYv7yhBZ91fZQoaAZoCWgPQwjfawiOy5FwQJSGlFKUaBVN7QFoFkdAk5lbz5GjK3V9lChoBmgJaA9DCPvNxHQheHFAlIaUUpRoFU1vAWgWR0CTmegezUqhdX2UKGgGaAloD0MIH4SAfMmzcECUhpRSlGgVTUgBaBZHQJOaAcFQl8h1fZQoaAZoCWgPQwiiCRSxCI5uQJSGlFKUaBVNOAFoFkdAk5p5SFXaJ3V9lChoBmgJaA9DCNPddTbkznJAlIaUUpRoFU2oAWgWR0CTmtNKRMewdX2UKGgGaAloD0MIsmSO5V3TckCUhpRSlGgVTXYBaBZHQJOcTD1oQFt1fZQoaAZoCWgPQwj/PA0YJLdRQJSGlFKUaBVNCwFoFkdAk5xdJSR8t3V9lChoBmgJaA9DCFRTknW4oXFAlIaUUpRoFU06AWgWR0CTnO0UoKD1dX2UKGgGaAloD0MIb9Of/QjgckCUhpRSlGgVTYABaBZHQJOeiMaS9uh1fZQoaAZoCWgPQwgzi1BshbRsQJSGlFKUaBVNaQFoFkdAk5/dGd7OV3V9lChoBmgJaA9DCNScvMjEknJAlIaUUpRoFU0wAWgWR0CToKX7Lt/ndX2UKGgGaAloD0MID0OrkzMoMMCUhpRSlGgVS+FoFkdAk6DfhybQTnV9lChoBmgJaA9DCNEi2/l+JnJAlIaUUpRoFU02AWgWR0CToV0I1LrYdX2UKGgGaAloD0MIVd0jm6tkckCUhpRSlGgVTUcBaBZHQJOhsJb+tKZ1fZQoaAZoCWgPQwioHf6arIlyQJSGlFKUaBVNdwFoFkdAk6LErsjVx3V9lChoBmgJaA9DCKBP5EmSqHJAlIaUUpRoFU0xAWgWR0CTot690zTGdX2UKGgGaAloD0MIVvDbEGNKckCUhpRSlGgVTSIBaBZHQJOi5iWmgrZ1fZQoaAZoCWgPQwgA4q5exVBxQJSGlFKUaBVNIQFoFkdAk6N78zhxYXV9lChoBmgJaA9DCDzdeeL5c3FAlIaUUpRoFU2YAWgWR0CTpbr1dxACdX2UKGgGaAloD0MIhqktdRDQb0CUhpRSlGgVTRUBaBZHQJOl2BmPHT91fZQoaAZoCWgPQwiwWS4bnfpxQJSGlFKUaBVNQAFoFkdAk7lvw/gR9XV9lChoBmgJaA9DCNgORuwT0G1AlIaUUpRoFU14AWgWR0CTu4KU3XI2dX2UKGgGaAloD0MIqYdodIeJbECUhpRSlGgVTSgBaBZHQJO9/Q6ZH/d1fZQoaAZoCWgPQwjvHwvRoUlrQJSGlFKUaBVNKwFoFkdAk78HwLE1mHV9lChoBmgJaA9DCCVdM/kmrnBAlIaUUpRoFU0wAWgWR0CTv7dJaq0ddX2UKGgGaAloD0MIn1c89cheYkCUhpRSlGgVTegDaBZHQJPAyP7vXsh1fZQoaAZoCWgPQwhBnfLohpZxQJSGlFKUaBVNPgFoFkdAk8HQDRtxdnV9lChoBmgJaA9DCKA01CgkzG9AlIaUUpRoFU1OAWgWR0CTwqIcinpCdX2UKGgGaAloD0MINzl80glecUCUhpRSlGgVTWEBaBZHQJPDeEpRXOp1fZQoaAZoCWgPQwh8CoDxDBpvQJSGlFKUaBVN2QFoFkdAk8XpSrHU+nV9lChoBmgJaA9DCAys4/ihcW9AlIaUUpRoFU0WAmgWR0CTx1jRlYlqdX2UKGgGaAloD0MI+BqC4/JrcECUhpRSlGgVTXwBaBZHQJPIeoqCpWF1fZQoaAZoCWgPQwgIOe//46JsQJSGlFKUaBVNlwFoFkdAk8qekxh2GXV9lChoBmgJaA9DCIXrUbie5G1AlIaUUpRoFU2lAmgWR0CTy9HcUM5PdX2UKGgGaAloD0MI5pZWQ+K+cUCUhpRSlGgVTSgBaBZHQJPMpaRp1zR1fZQoaAZoCWgPQwjk9PV8TZVyQJSGlFKUaBVNDQFoFkdAk82P1YhdMXV9lChoBmgJaA9DCG3KFd7lC25AlIaUUpRoFU24AWgWR0CTzraxX4j9dX2UKGgGaAloD0MIP+PCgZCFcECUhpRSlGgVTYkBaBZHQJPPN9mYjSp1fZQoaAZoCWgPQwjfiO5Zl8VxQJSGlFKUaBVNmgFoFkdAk9D4KQaJh3V9lChoBmgJaA9DCCzTLxGvXHBAlIaUUpRoFU2pA2gWR0CT0aXa8Hv+dX2UKGgGaAloD0MImWVPAhszbECUhpRSlGgVTYkBaBZHQJPR4tDlYEJ1fZQoaAZoCWgPQwhCk8SScmdvQJSGlFKUaBVNtAJoFkdAk9Ldfb9IgHV9lChoBmgJaA9DCInPnWB/9GxAlIaUUpRoFU0tAWgWR0CT0vCQtBfKdX2UKGgGaAloD0MItOOG3415cUCUhpRSlGgVTQMBaBZHQJPTeM+/xlR1fZQoaAZoCWgPQwiQoWMHVQJyQJSGlFKUaBVN0AFoFkdAk9Xvf0mMO3V9lChoBmgJaA9DCN7/xwkTWXBAlIaUUpRoFU0/AWgWR0CT14pFTefqdX2UKGgGaAloD0MIrP4Iw8CeckCUhpRSlGgVTUgBaBZHQJPZADklu3t1fZQoaAZoCWgPQwg3b5wU5m1xQJSGlFKUaBVNJAFoFkdAk9kVN5+pfnV9lChoBmgJaA9DCA9iZwqd9W9AlIaUUpRoFU11AWgWR0CT261Ng0CSdX2UKGgGaAloD0MIrp0oCYkAcECUhpRSlGgVTVQDaBZHQJPbxDCxeLN1fZQoaAZoCWgPQwjsia4Lf0ByQJSGlFKUaBVN+wFoFkdAk9w6hUR3/3V9lChoBmgJaA9DCFZJZB9kM3NAlIaUUpRoFU1mAWgWR0CT3TYRdyDJdX2UKGgGaAloD0MIp+mzA+60cECUhpRSlGgVTVQBaBZHQJPeCB19v0h1fZQoaAZoCWgPQwj4UnjQbJtyQJSGlFKUaBVNLgFoFkdAk95vVqesgnV9lChoBmgJaA9DCAK6L2d2vHBAlIaUUpRoFU1iAWgWR0CT3wENvwVkdX2UKGgGaAloD0MIyjZwB+qebkCUhpRSlGgVTUUBaBZHQJPfrGYKIBR1fZQoaAZoCWgPQwigGFkyR0JxQJSGlFKUaBVNHAFoFkdAk+CEMLF4s3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 256, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppoLunarLander_1e6.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:909fb1b52bbd5b5798c8c6e2d44d539e0620cb173b07eecffe3c1ec9691cceff
3
+ size 146613
ppoLunarLander_1e6/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppoLunarLander_1e6/data ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6a689b3670>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6a689b3700>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6a689b3790>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6a689b3820>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f6a689b38b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f6a689b3940>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6a689b39d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6a689b3a60>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f6a689b3af0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6a689b3b80>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6a689b3c10>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6a689b3ca0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f6a689b2b40>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1673879122881173009,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
57
+ },
58
+ "_last_obs": null,
59
+ "_last_episode_starts": {
60
+ ":type:": "<class 'numpy.ndarray'>",
61
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
62
+ },
63
+ "_last_original_obs": null,
64
+ "_episode_num": 0,
65
+ "use_sde": false,
66
+ "sde_sample_freq": -1,
67
+ "_current_progress_remaining": -0.015808000000000044,
68
+ "ep_info_buffer": {
69
+ ":type:": "<class 'collections.deque'>",
70
+ ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIchb2tAM7cECUhpRSlIwBbJRNRgGMAXSUR0CTYNsvqTr3dX2UKGgGaAloD0MIrI4c6Qy/bkCUhpRSlGgVTTsBaBZHQJNhneQ+2Vp1fZQoaAZoCWgPQwhoQpPEEtBvQJSGlFKUaBVNYwFoFkdAk2HZ8KG+K3V9lChoBmgJaA9DCN5Zu+1CmU5AlIaUUpRoFUvtaBZHQJNiYe3hGYt1fZQoaAZoCWgPQwhpb/CFydtvQJSGlFKUaBVNGQFoFkdAk2S6w6hg3XV9lChoBmgJaA9DCPksz4O7B3JAlIaUUpRoFU1IAWgWR0CTZR8+RoysdX2UKGgGaAloD0MIdGIP7WOJcECUhpRSlGgVTWIBaBZHQJNlKMKkVN51fZQoaAZoCWgPQwgHI/YJIFZuQJSGlFKUaBVNIgFoFkdAk2WV1SwW33V9lChoBmgJaA9DCOuM74sLx3FAlIaUUpRoFU2xAWgWR0CTZie9zwMIdX2UKGgGaAloD0MIOzdtxqkbcECUhpRSlGgVTSYBaBZHQJNpwQBgeBB1fZQoaAZoCWgPQwgSoRFsnC9xQJSGlFKUaBVNdAFoFkdAk2pIoJAt4HV9lChoBmgJaA9DCHNoke28bXBAlIaUUpRoFU0vAWgWR0CTbAIfbKzSdX2UKGgGaAloD0MI2c9iKVLncECUhpRSlGgVTVQBaBZHQJNsPTmW+oN1fZQoaAZoCWgPQwgo1NNHIFhzQJSGlFKUaBVNswFoFkdAk21L3PAwf3V9lChoBmgJaA9DCLeb4JsmcW1AlIaUUpRoFU1+AWgWR0CTbYF+uvECdX2UKGgGaAloD0MIur4PB8lMcECUhpRSlGgVTVMBaBZHQJNun8DSw4d1fZQoaAZoCWgPQwjyXN+HQ4lwQJSGlFKUaBVNGQFoFkdAk284ekpI+XV9lChoBmgJaA9DCAytTs7QSWxAlIaUUpRoFU0lAWgWR0CTcCY4yXUpdX2UKGgGaAloD0MILNSa5t2mcUCUhpRSlGgVTeABaBZHQJNwL8yeqaR1fZQoaAZoCWgPQwhe1y/YjUhtQJSGlFKUaBVNFgFoFkdAk4OUWVNYbXV9lChoBmgJaA9DCAPqzai5MnBAlIaUUpRoFU0sAWgWR0CTg6ZlnRLLdX2UKGgGaAloD0MI9G4sKIyRcECUhpRSlGgVTc0BaBZHQJOD3vAoG6h1fZQoaAZoCWgPQwj4GRcOhHxuQJSGlFKUaBVNwwFoFkdAk4SKEnLJS3V9lChoBmgJaA9DCMcTQZyH329AlIaUUpRoFU0lAWgWR0CThxkjopx4dX2UKGgGaAloD0MIoTAo06jecUCUhpRSlGgVTT4BaBZHQJOIg2MsH0N1fZQoaAZoCWgPQwiVKeYgqEJwQJSGlFKUaBVN+wFoFkdAk4oUJKJ2uHV9lChoBmgJaA9DCEnajT6mCHFAlIaUUpRoFU1KAWgWR0CTio+6y0KJdX2UKGgGaAloD0MIzjeie1aabkCUhpRSlGgVTUcBaBZHQJOLjCLuQZJ1fZQoaAZoCWgPQwgb1elA1stuQJSGlFKUaBVNHwFoFkdAk4v4E4ecQXV9lChoBmgJaA9DCKeVQiCXZGxAlIaUUpRoFU1cAWgWR0CTjIZMtbs4dX2UKGgGaAloD0MIEjKQZxdpbECUhpRSlGgVTSIBaBZHQJOM9RuTA311fZQoaAZoCWgPQwh0Ka4qO7VyQJSGlFKUaBVNKwFoFkdAk44LK3d9D3V9lChoBmgJaA9DCORLqOBw5HJAlIaUUpRoFU1NAWgWR0CTjy1X/5tWdX2UKGgGaAloD0MIDmYTYNjeb0CUhpRSlGgVTUMBaBZHQJOPLnjhky11fZQoaAZoCWgPQwh8YwgAjvVgQJSGlFKUaBVN6ANoFkdAk5F50r9VFXV9lChoBmgJaA9DCLq7zob8pXJAlIaUUpRoFU2wAWgWR0CTkfMjeKsNdX2UKGgGaAloD0MIsVBrmvemckCUhpRSlGgVTTACaBZHQJOS9h5PdmB1fZQoaAZoCWgPQwghsHJoEcJwQJSGlFKUaBVNNQFoFkdAk5PDZDiOvXV9lChoBmgJaA9DCOBNt+zQYXBAlIaUUpRoFU1UAmgWR0CTlqF3pwCKdX2UKGgGaAloD0MIusDlsSb2cECUhpRSlGgVTV4BaBZHQJOW6l9Brvd1fZQoaAZoCWgPQwihoupX+vxxQJSGlFKUaBVNBwJoFkdAk5c65TZQHnV9lChoBmgJaA9DCLgf8MCA0XFAlIaUUpRoFU07AWgWR0CTl30UGmk4dX2UKGgGaAloD0MIyVUsftOfcECUhpRSlGgVTUMBaBZHQJOYv7yhBZ91fZQoaAZoCWgPQwjfawiOy5FwQJSGlFKUaBVN7QFoFkdAk5lbz5GjK3V9lChoBmgJaA9DCPvNxHQheHFAlIaUUpRoFU1vAWgWR0CTmegezUqhdX2UKGgGaAloD0MIH4SAfMmzcECUhpRSlGgVTUgBaBZHQJOaAcFQl8h1fZQoaAZoCWgPQwiiCRSxCI5uQJSGlFKUaBVNOAFoFkdAk5p5SFXaJ3V9lChoBmgJaA9DCNPddTbkznJAlIaUUpRoFU2oAWgWR0CTmtNKRMewdX2UKGgGaAloD0MIsmSO5V3TckCUhpRSlGgVTXYBaBZHQJOcTD1oQFt1fZQoaAZoCWgPQwj/PA0YJLdRQJSGlFKUaBVNCwFoFkdAk5xdJSR8t3V9lChoBmgJaA9DCFRTknW4oXFAlIaUUpRoFU06AWgWR0CTnO0UoKD1dX2UKGgGaAloD0MIb9Of/QjgckCUhpRSlGgVTYABaBZHQJOeiMaS9uh1fZQoaAZoCWgPQwgzi1BshbRsQJSGlFKUaBVNaQFoFkdAk5/dGd7OV3V9lChoBmgJaA9DCNScvMjEknJAlIaUUpRoFU0wAWgWR0CToKX7Lt/ndX2UKGgGaAloD0MID0OrkzMoMMCUhpRSlGgVS+FoFkdAk6DfhybQTnV9lChoBmgJaA9DCNEi2/l+JnJAlIaUUpRoFU02AWgWR0CToV0I1LrYdX2UKGgGaAloD0MIVd0jm6tkckCUhpRSlGgVTUcBaBZHQJOhsJb+tKZ1fZQoaAZoCWgPQwioHf6arIlyQJSGlFKUaBVNdwFoFkdAk6LErsjVx3V9lChoBmgJaA9DCKBP5EmSqHJAlIaUUpRoFU0xAWgWR0CTot690zTGdX2UKGgGaAloD0MIVvDbEGNKckCUhpRSlGgVTSIBaBZHQJOi5iWmgrZ1fZQoaAZoCWgPQwgA4q5exVBxQJSGlFKUaBVNIQFoFkdAk6N78zhxYXV9lChoBmgJaA9DCDzdeeL5c3FAlIaUUpRoFU2YAWgWR0CTpbr1dxACdX2UKGgGaAloD0MIhqktdRDQb0CUhpRSlGgVTRUBaBZHQJOl2BmPHT91fZQoaAZoCWgPQwiwWS4bnfpxQJSGlFKUaBVNQAFoFkdAk7lvw/gR9XV9lChoBmgJaA9DCNgORuwT0G1AlIaUUpRoFU14AWgWR0CTu4KU3XI2dX2UKGgGaAloD0MIqYdodIeJbECUhpRSlGgVTSgBaBZHQJO9/Q6ZH/d1fZQoaAZoCWgPQwjvHwvRoUlrQJSGlFKUaBVNKwFoFkdAk78HwLE1mHV9lChoBmgJaA9DCCVdM/kmrnBAlIaUUpRoFU0wAWgWR0CTv7dJaq0ddX2UKGgGaAloD0MIn1c89cheYkCUhpRSlGgVTegDaBZHQJPAyP7vXsh1fZQoaAZoCWgPQwhBnfLohpZxQJSGlFKUaBVNPgFoFkdAk8HQDRtxdnV9lChoBmgJaA9DCKA01CgkzG9AlIaUUpRoFU1OAWgWR0CTwqIcinpCdX2UKGgGaAloD0MINzl80glecUCUhpRSlGgVTWEBaBZHQJPDeEpRXOp1fZQoaAZoCWgPQwh8CoDxDBpvQJSGlFKUaBVN2QFoFkdAk8XpSrHU+nV9lChoBmgJaA9DCAys4/ihcW9AlIaUUpRoFU0WAmgWR0CTx1jRlYlqdX2UKGgGaAloD0MI+BqC4/JrcECUhpRSlGgVTXwBaBZHQJPIeoqCpWF1fZQoaAZoCWgPQwgIOe//46JsQJSGlFKUaBVNlwFoFkdAk8qekxh2GXV9lChoBmgJaA9DCIXrUbie5G1AlIaUUpRoFU2lAmgWR0CTy9HcUM5PdX2UKGgGaAloD0MI5pZWQ+K+cUCUhpRSlGgVTSgBaBZHQJPMpaRp1zR1fZQoaAZoCWgPQwjk9PV8TZVyQJSGlFKUaBVNDQFoFkdAk82P1YhdMXV9lChoBmgJaA9DCG3KFd7lC25AlIaUUpRoFU24AWgWR0CTzraxX4j9dX2UKGgGaAloD0MIP+PCgZCFcECUhpRSlGgVTYkBaBZHQJPPN9mYjSp1fZQoaAZoCWgPQwjfiO5Zl8VxQJSGlFKUaBVNmgFoFkdAk9D4KQaJh3V9lChoBmgJaA9DCCzTLxGvXHBAlIaUUpRoFU2pA2gWR0CT0aXa8Hv+dX2UKGgGaAloD0MImWVPAhszbECUhpRSlGgVTYkBaBZHQJPR4tDlYEJ1fZQoaAZoCWgPQwhCk8SScmdvQJSGlFKUaBVNtAJoFkdAk9Ldfb9IgHV9lChoBmgJaA9DCInPnWB/9GxAlIaUUpRoFU0tAWgWR0CT0vCQtBfKdX2UKGgGaAloD0MItOOG3415cUCUhpRSlGgVTQMBaBZHQJPTeM+/xlR1fZQoaAZoCWgPQwiQoWMHVQJyQJSGlFKUaBVN0AFoFkdAk9Xvf0mMO3V9lChoBmgJaA9DCN7/xwkTWXBAlIaUUpRoFU0/AWgWR0CT14pFTefqdX2UKGgGaAloD0MIrP4Iw8CeckCUhpRSlGgVTUgBaBZHQJPZADklu3t1fZQoaAZoCWgPQwg3b5wU5m1xQJSGlFKUaBVNJAFoFkdAk9kVN5+pfnV9lChoBmgJaA9DCA9iZwqd9W9AlIaUUpRoFU11AWgWR0CT261Ng0CSdX2UKGgGaAloD0MIrp0oCYkAcECUhpRSlGgVTVQDaBZHQJPbxDCxeLN1fZQoaAZoCWgPQwjsia4Lf0ByQJSGlFKUaBVN+wFoFkdAk9w6hUR3/3V9lChoBmgJaA9DCFZJZB9kM3NAlIaUUpRoFU1mAWgWR0CT3TYRdyDJdX2UKGgGaAloD0MIp+mzA+60cECUhpRSlGgVTVQBaBZHQJPeCB19v0h1fZQoaAZoCWgPQwj4UnjQbJtyQJSGlFKUaBVNLgFoFkdAk95vVqesgnV9lChoBmgJaA9DCAK6L2d2vHBAlIaUUpRoFU1iAWgWR0CT3wENvwVkdX2UKGgGaAloD0MIyjZwB+qebkCUhpRSlGgVTUUBaBZHQJPfrGYKIBR1fZQoaAZoCWgPQwigGFkyR0JxQJSGlFKUaBVNHAFoFkdAk+CEMLF4s3VlLg=="
71
+ },
72
+ "ep_success_buffer": {
73
+ ":type:": "<class 'collections.deque'>",
74
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
75
+ },
76
+ "_n_updates": 256,
77
+ "n_steps": 1024,
78
+ "gamma": 0.999,
79
+ "gae_lambda": 0.98,
80
+ "ent_coef": 0.01,
81
+ "vf_coef": 0.5,
82
+ "max_grad_norm": 0.5,
83
+ "batch_size": 64,
84
+ "n_epochs": 4,
85
+ "clip_range": {
86
+ ":type:": "<class 'function'>",
87
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
88
+ },
89
+ "clip_range_vf": null,
90
+ "normalize_advantage": true,
91
+ "target_kl": null
92
+ }
ppoLunarLander_1e6/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:942329f8fccc5e826fe68613959ebbf8584428f235d6e27bf94de56318bff132
3
+ size 88057
ppoLunarLander_1e6/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:477c027c868c57630b2b221cd581af3bc90d8ef7ccda6fa21fa26280f9320a93
3
+ size 43393
ppoLunarLander_1e6/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppoLunarLander_1e6/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.0+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (206 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 266.24234790916836, "std_reward": 12.581200596263752, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-16T15:18:13.998719"}