pejmantheory commited on
Commit
76b5f6c
·
verified ·
1 Parent(s): a055832

Add model card

Browse files
Files changed (1) hide show
  1. README.md +222 -0
README.md ADDED
@@ -0,0 +1,222 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - machine-learning
5
+ - xgboost
6
+ - quantum-enhanced
7
+ - bleu-js
8
+ - classification
9
+ - gradient-boosting
10
+ datasets:
11
+ - custom
12
+ metrics:
13
+ - accuracy
14
+ - f1-score
15
+ - roc-auc
16
+ model-index:
17
+ - name: bleu-xgboost-classifier
18
+ results:
19
+ - task:
20
+ type: classification
21
+ dataset:
22
+ name: Custom Dataset
23
+ type: custom
24
+ metrics:
25
+ - type: accuracy
26
+ value: TBD
27
+ - type: f1-score
28
+ value: TBD
29
+ - type: roc-auc
30
+ value: TBD
31
+ ---
32
+
33
+ # Bleu.js XGBoost Classifier
34
+
35
+ ## Model Description
36
+
37
+ This is an XGBoost classification model from the Bleu.js quantum-enhanced AI platform. The model combines classical gradient boosting with quantum computing capabilities for improved performance and feature extraction.
38
+
39
+ ## Model Details
40
+
41
+ ### Model Type
42
+ - **Architecture**: XGBoost Classifier
43
+ - **Framework**: XGBoost with quantum-enhanced features
44
+ - **Task**: Binary Classification
45
+ - **Version**: 1.2.1
46
+
47
+ ### Training Details
48
+
49
+ #### Training Data
50
+ - **Dataset**: Custom training dataset
51
+ - **Training Script**: `backend/train_xgboost.py`
52
+ - **Data Split**: 80% training, 20% validation
53
+
54
+ #### Hyperparameters
55
+ - `max_depth`: 6
56
+ - `learning_rate`: 0.1
57
+ - `n_estimators`: 100
58
+ - `objective`: binary:logistic
59
+ - `random_state`: 42
60
+ - `early_stopping_rounds`: 10
61
+
62
+ #### Preprocessing
63
+ - Feature scaling with StandardScaler
64
+ - Quantum-enhanced feature extraction (optional)
65
+ - Data normalization
66
+
67
+ ### Model Files
68
+
69
+ - `xgboost_model_latest.pkl`: The trained XGBoost model (latest version)
70
+ - `xgboost_model.pkl`: The trained XGBoost model
71
+ - `scaler_latest.pkl`: Feature scaler for preprocessing (latest version)
72
+ - `scaler.pkl`: Feature scaler for preprocessing
73
+
74
+ ## How to Use
75
+
76
+ ### Installation
77
+
78
+ ```bash
79
+ pip install xgboost numpy scikit-learn
80
+ ```
81
+
82
+ ### Basic Usage
83
+
84
+ ```python
85
+ import pickle
86
+ import numpy as np
87
+ from sklearn.preprocessing import StandardScaler
88
+
89
+ # Load the model and scaler
90
+ with open('xgboost_model_latest.pkl', 'rb') as f:
91
+ model = pickle.load(f)
92
+
93
+ with open('scaler_latest.pkl', 'rb') as f:
94
+ scaler = pickle.load(f)
95
+
96
+ # Prepare your data (numpy array with shape: n_samples, n_features)
97
+ X = np.array([[feature1, feature2, ...]])
98
+
99
+ # Scale the features
100
+ X_scaled = scaler.transform(X)
101
+
102
+ # Make predictions
103
+ predictions = model.predict(X_scaled)
104
+ probabilities = model.predict_proba(X_scaled)
105
+
106
+ print(f"Predictions: {predictions}")
107
+ print(f"Probabilities: {probabilities}")
108
+ ```
109
+
110
+ ### Using with Bleu.js
111
+
112
+ ```python
113
+ from bleujs import BleuJS
114
+
115
+ # Initialize BleuJS with quantum enhancements
116
+ bleu = BleuJS(
117
+ quantum_mode=True,
118
+ model_path="xgboost_model_latest.pkl",
119
+ device="cuda" # or "cpu"
120
+ )
121
+
122
+ # Process data with quantum features
123
+ results = bleu.process(
124
+ input_data=your_data,
125
+ quantum_features=True
126
+ )
127
+ ```
128
+
129
+ ### Download from Hugging Face
130
+
131
+ ```python
132
+ from huggingface_hub import hf_hub_download
133
+ import pickle
134
+
135
+ # Download model
136
+ model_path = hf_hub_download(
137
+ repo_id="helloblueai/bleu-xgboost-classifier",
138
+ filename="xgboost_model_latest.pkl"
139
+ )
140
+
141
+ scaler_path = hf_hub_download(
142
+ repo_id="helloblueai/bleu-xgboost-classifier",
143
+ filename="scaler_latest.pkl"
144
+ )
145
+
146
+ # Load model
147
+ with open(model_path, 'rb') as f:
148
+ model = pickle.load(f)
149
+
150
+ with open(scaler_path, 'rb') as f:
151
+ scaler = pickle.load(f)
152
+ ```
153
+
154
+ ## Model Performance
155
+
156
+ Performance metrics will be updated after evaluation. The model uses:
157
+ - Early stopping to prevent overfitting
158
+ - Cross-validation for robust evaluation
159
+ - Quantum-enhanced features for improved accuracy
160
+
161
+ ## Limitations and Bias
162
+
163
+ - This model was trained on a specific dataset and may not generalize to other domains
164
+ - Performance may vary depending on input data distribution
165
+ - Quantum enhancements require compatible hardware for optimal performance
166
+ - Model performance depends on data quality and feature engineering
167
+
168
+ ## Training Information
169
+
170
+ ### Training Script
171
+ The model is trained using `backend/train_xgboost.py`:
172
+
173
+ ```python
174
+ params = {
175
+ "max_depth": 6,
176
+ "learning_rate": 0.1,
177
+ "n_estimators": 100,
178
+ "objective": "binary:logistic",
179
+ "random_state": 42,
180
+ }
181
+ ```
182
+
183
+ ### Evaluation
184
+ - Validation set: 20% of training data
185
+ - Early stopping: 10 rounds
186
+ - Evaluation metric: Log loss (default)
187
+
188
+ ## Citation
189
+
190
+ If you use this model in your research, please cite:
191
+
192
+ ```bibtex
193
+ @software{bleu_js_2024,
194
+ title={Bleu.js: Quantum-Enhanced AI Platform},
195
+ author={HelloblueAI},
196
+ year={2024},
197
+ url={https://github.com/HelloblueAI/Bleu.js},
198
+ version={1.2.1}
199
+ }
200
+ ```
201
+
202
+ ## License
203
+
204
+ This model is released under the MIT License. See the LICENSE file for more details.
205
+
206
+ ## Contact
207
+
208
+ For questions or issues, please contact:
209
+ - **Email**: [email protected]
210
+ - **GitHub**: https://github.com/HelloblueAI/Bleu.js
211
+ - **Organization**: https://huggingface.co/helloblueai
212
+
213
+ ## Acknowledgments
214
+
215
+ This model is part of the Bleu.js project, which combines classical machine learning with quantum computing capabilities for enhanced performance.
216
+
217
+ ## Related Models
218
+
219
+ - Bleu.js Quantum Vision Model
220
+ - Bleu.js Hybrid Neural Network
221
+ - Bleu.js Quantum Feature Extractor
222
+