Add model card
Browse files
README.md
ADDED
|
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
tags:
|
| 4 |
+
- machine-learning
|
| 5 |
+
- xgboost
|
| 6 |
+
- quantum-enhanced
|
| 7 |
+
- bleu-js
|
| 8 |
+
- classification
|
| 9 |
+
- gradient-boosting
|
| 10 |
+
datasets:
|
| 11 |
+
- custom
|
| 12 |
+
metrics:
|
| 13 |
+
- accuracy
|
| 14 |
+
- f1-score
|
| 15 |
+
- roc-auc
|
| 16 |
+
model-index:
|
| 17 |
+
- name: bleu-xgboost-classifier
|
| 18 |
+
results:
|
| 19 |
+
- task:
|
| 20 |
+
type: classification
|
| 21 |
+
dataset:
|
| 22 |
+
name: Custom Dataset
|
| 23 |
+
type: custom
|
| 24 |
+
metrics:
|
| 25 |
+
- type: accuracy
|
| 26 |
+
value: TBD
|
| 27 |
+
- type: f1-score
|
| 28 |
+
value: TBD
|
| 29 |
+
- type: roc-auc
|
| 30 |
+
value: TBD
|
| 31 |
+
---
|
| 32 |
+
|
| 33 |
+
# Bleu.js XGBoost Classifier
|
| 34 |
+
|
| 35 |
+
## Model Description
|
| 36 |
+
|
| 37 |
+
This is an XGBoost classification model from the Bleu.js quantum-enhanced AI platform. The model combines classical gradient boosting with quantum computing capabilities for improved performance and feature extraction.
|
| 38 |
+
|
| 39 |
+
## Model Details
|
| 40 |
+
|
| 41 |
+
### Model Type
|
| 42 |
+
- **Architecture**: XGBoost Classifier
|
| 43 |
+
- **Framework**: XGBoost with quantum-enhanced features
|
| 44 |
+
- **Task**: Binary Classification
|
| 45 |
+
- **Version**: 1.2.1
|
| 46 |
+
|
| 47 |
+
### Training Details
|
| 48 |
+
|
| 49 |
+
#### Training Data
|
| 50 |
+
- **Dataset**: Custom training dataset
|
| 51 |
+
- **Training Script**: `backend/train_xgboost.py`
|
| 52 |
+
- **Data Split**: 80% training, 20% validation
|
| 53 |
+
|
| 54 |
+
#### Hyperparameters
|
| 55 |
+
- `max_depth`: 6
|
| 56 |
+
- `learning_rate`: 0.1
|
| 57 |
+
- `n_estimators`: 100
|
| 58 |
+
- `objective`: binary:logistic
|
| 59 |
+
- `random_state`: 42
|
| 60 |
+
- `early_stopping_rounds`: 10
|
| 61 |
+
|
| 62 |
+
#### Preprocessing
|
| 63 |
+
- Feature scaling with StandardScaler
|
| 64 |
+
- Quantum-enhanced feature extraction (optional)
|
| 65 |
+
- Data normalization
|
| 66 |
+
|
| 67 |
+
### Model Files
|
| 68 |
+
|
| 69 |
+
- `xgboost_model_latest.pkl`: The trained XGBoost model (latest version)
|
| 70 |
+
- `xgboost_model.pkl`: The trained XGBoost model
|
| 71 |
+
- `scaler_latest.pkl`: Feature scaler for preprocessing (latest version)
|
| 72 |
+
- `scaler.pkl`: Feature scaler for preprocessing
|
| 73 |
+
|
| 74 |
+
## How to Use
|
| 75 |
+
|
| 76 |
+
### Installation
|
| 77 |
+
|
| 78 |
+
```bash
|
| 79 |
+
pip install xgboost numpy scikit-learn
|
| 80 |
+
```
|
| 81 |
+
|
| 82 |
+
### Basic Usage
|
| 83 |
+
|
| 84 |
+
```python
|
| 85 |
+
import pickle
|
| 86 |
+
import numpy as np
|
| 87 |
+
from sklearn.preprocessing import StandardScaler
|
| 88 |
+
|
| 89 |
+
# Load the model and scaler
|
| 90 |
+
with open('xgboost_model_latest.pkl', 'rb') as f:
|
| 91 |
+
model = pickle.load(f)
|
| 92 |
+
|
| 93 |
+
with open('scaler_latest.pkl', 'rb') as f:
|
| 94 |
+
scaler = pickle.load(f)
|
| 95 |
+
|
| 96 |
+
# Prepare your data (numpy array with shape: n_samples, n_features)
|
| 97 |
+
X = np.array([[feature1, feature2, ...]])
|
| 98 |
+
|
| 99 |
+
# Scale the features
|
| 100 |
+
X_scaled = scaler.transform(X)
|
| 101 |
+
|
| 102 |
+
# Make predictions
|
| 103 |
+
predictions = model.predict(X_scaled)
|
| 104 |
+
probabilities = model.predict_proba(X_scaled)
|
| 105 |
+
|
| 106 |
+
print(f"Predictions: {predictions}")
|
| 107 |
+
print(f"Probabilities: {probabilities}")
|
| 108 |
+
```
|
| 109 |
+
|
| 110 |
+
### Using with Bleu.js
|
| 111 |
+
|
| 112 |
+
```python
|
| 113 |
+
from bleujs import BleuJS
|
| 114 |
+
|
| 115 |
+
# Initialize BleuJS with quantum enhancements
|
| 116 |
+
bleu = BleuJS(
|
| 117 |
+
quantum_mode=True,
|
| 118 |
+
model_path="xgboost_model_latest.pkl",
|
| 119 |
+
device="cuda" # or "cpu"
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
# Process data with quantum features
|
| 123 |
+
results = bleu.process(
|
| 124 |
+
input_data=your_data,
|
| 125 |
+
quantum_features=True
|
| 126 |
+
)
|
| 127 |
+
```
|
| 128 |
+
|
| 129 |
+
### Download from Hugging Face
|
| 130 |
+
|
| 131 |
+
```python
|
| 132 |
+
from huggingface_hub import hf_hub_download
|
| 133 |
+
import pickle
|
| 134 |
+
|
| 135 |
+
# Download model
|
| 136 |
+
model_path = hf_hub_download(
|
| 137 |
+
repo_id="helloblueai/bleu-xgboost-classifier",
|
| 138 |
+
filename="xgboost_model_latest.pkl"
|
| 139 |
+
)
|
| 140 |
+
|
| 141 |
+
scaler_path = hf_hub_download(
|
| 142 |
+
repo_id="helloblueai/bleu-xgboost-classifier",
|
| 143 |
+
filename="scaler_latest.pkl"
|
| 144 |
+
)
|
| 145 |
+
|
| 146 |
+
# Load model
|
| 147 |
+
with open(model_path, 'rb') as f:
|
| 148 |
+
model = pickle.load(f)
|
| 149 |
+
|
| 150 |
+
with open(scaler_path, 'rb') as f:
|
| 151 |
+
scaler = pickle.load(f)
|
| 152 |
+
```
|
| 153 |
+
|
| 154 |
+
## Model Performance
|
| 155 |
+
|
| 156 |
+
Performance metrics will be updated after evaluation. The model uses:
|
| 157 |
+
- Early stopping to prevent overfitting
|
| 158 |
+
- Cross-validation for robust evaluation
|
| 159 |
+
- Quantum-enhanced features for improved accuracy
|
| 160 |
+
|
| 161 |
+
## Limitations and Bias
|
| 162 |
+
|
| 163 |
+
- This model was trained on a specific dataset and may not generalize to other domains
|
| 164 |
+
- Performance may vary depending on input data distribution
|
| 165 |
+
- Quantum enhancements require compatible hardware for optimal performance
|
| 166 |
+
- Model performance depends on data quality and feature engineering
|
| 167 |
+
|
| 168 |
+
## Training Information
|
| 169 |
+
|
| 170 |
+
### Training Script
|
| 171 |
+
The model is trained using `backend/train_xgboost.py`:
|
| 172 |
+
|
| 173 |
+
```python
|
| 174 |
+
params = {
|
| 175 |
+
"max_depth": 6,
|
| 176 |
+
"learning_rate": 0.1,
|
| 177 |
+
"n_estimators": 100,
|
| 178 |
+
"objective": "binary:logistic",
|
| 179 |
+
"random_state": 42,
|
| 180 |
+
}
|
| 181 |
+
```
|
| 182 |
+
|
| 183 |
+
### Evaluation
|
| 184 |
+
- Validation set: 20% of training data
|
| 185 |
+
- Early stopping: 10 rounds
|
| 186 |
+
- Evaluation metric: Log loss (default)
|
| 187 |
+
|
| 188 |
+
## Citation
|
| 189 |
+
|
| 190 |
+
If you use this model in your research, please cite:
|
| 191 |
+
|
| 192 |
+
```bibtex
|
| 193 |
+
@software{bleu_js_2024,
|
| 194 |
+
title={Bleu.js: Quantum-Enhanced AI Platform},
|
| 195 |
+
author={HelloblueAI},
|
| 196 |
+
year={2024},
|
| 197 |
+
url={https://github.com/HelloblueAI/Bleu.js},
|
| 198 |
+
version={1.2.1}
|
| 199 |
+
}
|
| 200 |
+
```
|
| 201 |
+
|
| 202 |
+
## License
|
| 203 |
+
|
| 204 |
+
This model is released under the MIT License. See the LICENSE file for more details.
|
| 205 |
+
|
| 206 |
+
## Contact
|
| 207 |
+
|
| 208 |
+
For questions or issues, please contact:
|
| 209 |
+
- **Email**: [email protected]
|
| 210 |
+
- **GitHub**: https://github.com/HelloblueAI/Bleu.js
|
| 211 |
+
- **Organization**: https://huggingface.co/helloblueai
|
| 212 |
+
|
| 213 |
+
## Acknowledgments
|
| 214 |
+
|
| 215 |
+
This model is part of the Bleu.js project, which combines classical machine learning with quantum computing capabilities for enhanced performance.
|
| 216 |
+
|
| 217 |
+
## Related Models
|
| 218 |
+
|
| 219 |
+
- Bleu.js Quantum Vision Model
|
| 220 |
+
- Bleu.js Hybrid Neural Network
|
| 221 |
+
- Bleu.js Quantum Feature Extractor
|
| 222 |
+
|