|
|
|
|
|
|
|
|
|
from datasets import load_dataset, Audio |
|
from transformers import pipeline, WhisperProcessor |
|
from torch.utils.data import DataLoader |
|
import torch |
|
from jiwer import wer as jiwer_wer |
|
from jiwer import cer as jiwer_cer |
|
import ipdb |
|
|
|
|
|
ds = load_dataset("google/fleurs", "km_kh", split="test") |
|
ds = ds.cast_column("audio", Audio(sampling_rate=16_000)) |
|
|
|
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline |
|
|
|
|
|
device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 |
|
|
|
|
|
model_id = "pengyizhou/whisper-fleurs-km_kh" |
|
|
|
model = AutoModelForSpeechSeq2Seq.from_pretrained( |
|
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True |
|
) |
|
model.to(device) |
|
whisper_model = "openai/whisper-large-v3" |
|
processor = WhisperProcessor.from_pretrained(whisper_model, language="khmer") |
|
|
|
asr = pipeline( |
|
"automatic-speech-recognition", |
|
model=model, |
|
tokenizer=processor.tokenizer, |
|
feature_extractor=processor.feature_extractor, |
|
torch_dtype=torch_dtype, |
|
chunk_length_s=30, |
|
batch_size=64, |
|
max_new_tokens=440, |
|
device=device, |
|
no_repeat_ngram_size=3, |
|
repetition_penalty=1.0, |
|
length_penalty=1.0, |
|
num_beams=1, |
|
do_sample=False, |
|
early_stopping=False, |
|
suppress_tokens=[], |
|
) |
|
|
|
|
|
|
|
def transcribe_batch(batch): |
|
|
|
inputs = [ ex["array"] for ex in batch["audio"] ] |
|
outputs = asr(inputs) |
|
|
|
preds = [ out["text"].lower().strip() for out in outputs ] |
|
return {"prediction": preds} |
|
|
|
|
|
result = ds.map( |
|
transcribe_batch, |
|
batched=True, |
|
batch_size=64, |
|
remove_columns=ds.column_names |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
refs = [t.lower().strip() for t in ds["transcription"]] |
|
preds = [t for t in result["prediction"]] |
|
score_cer = jiwer_cer(refs, preds) |
|
score_wer = jiwer_wer(refs, preds) |
|
|
|
print(f"CER on FLEURS km_kh: {score_cer*100:.2f}%") |
|
print(f"WER on FLEURS km_kh: {score_wer*100:.2f}%") |
|
|
|
with open("./km_kh_finetune.pred", "w") as pred_results: |
|
for pred in preds: |
|
pred_results.write("{}\n".format(pred)) |
|
|
|
with open("./km_kh.ref", "w") as ref_results: |
|
for ref in refs: |
|
ref_results.write("{}\n".format(ref)) |
|
|