kaitos255 commited on
Commit
d25181b
·
1 Parent(s): 98db8b2

add results

Browse files
results/Classification/scores_amazon_counterfactual_classification.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "macro_f1",
3
+ "metric_value": 0.7719949223708622,
4
+ "details": {
5
+ "optimal_classifier_name": "logreg",
6
+ "val_scores": {
7
+ "knn_cosine_k_2": {
8
+ "accuracy": 0.8969957081545065,
9
+ "macro_f1": 0.619281045751634
10
+ },
11
+ "logreg": {
12
+ "accuracy": 0.8948497854077253,
13
+ "macro_f1": 0.7073577095108103
14
+ }
15
+ },
16
+ "test_scores": {
17
+ "logreg": {
18
+ "accuracy": 0.9143468950749465,
19
+ "macro_f1": 0.7719949223708622
20
+ }
21
+ }
22
+ }
23
+ }
results/Classification/scores_amazon_review_classification.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "macro_f1",
3
+ "metric_value": 0.5925073173503907,
4
+ "details": {
5
+ "optimal_classifier_name": "logreg",
6
+ "val_scores": {
7
+ "knn_cosine_k_2": {
8
+ "accuracy": 0.4426,
9
+ "macro_f1": 0.4315855430386996
10
+ },
11
+ "logreg": {
12
+ "accuracy": 0.5996,
13
+ "macro_f1": 0.5954262204317589
14
+ }
15
+ },
16
+ "test_scores": {
17
+ "logreg": {
18
+ "accuracy": 0.5942,
19
+ "macro_f1": 0.5925073173503907
20
+ }
21
+ }
22
+ }
23
+ }
results/Classification/scores_massive_intent_classification.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "macro_f1",
3
+ "metric_value": 0.8253141488047901,
4
+ "details": {
5
+ "optimal_classifier_name": "logreg",
6
+ "val_scores": {
7
+ "knn_cosine_k_2": {
8
+ "accuracy": 0.778160354156419,
9
+ "macro_f1": 0.745326126234686
10
+ },
11
+ "logreg": {
12
+ "accuracy": 0.8622725036891293,
13
+ "macro_f1": 0.8676531684090193
14
+ }
15
+ },
16
+ "test_scores": {
17
+ "logreg": {
18
+ "accuracy": 0.851714862138534,
19
+ "macro_f1": 0.8253141488047901
20
+ }
21
+ }
22
+ }
23
+ }
results/Classification/scores_massive_scenario_classification.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "macro_f1",
3
+ "metric_value": 0.8980428060442256,
4
+ "details": {
5
+ "optimal_classifier_name": "logreg",
6
+ "val_scores": {
7
+ "knn_cosine_k_2": {
8
+ "accuracy": 0.8735858337432366,
9
+ "macro_f1": 0.8686101645781477
10
+ },
11
+ "logreg": {
12
+ "accuracy": 0.8981800295130349,
13
+ "macro_f1": 0.892948610024518
14
+ }
15
+ },
16
+ "test_scores": {
17
+ "logreg": {
18
+ "accuracy": 0.8997982515131137,
19
+ "macro_f1": 0.8980428060442256
20
+ }
21
+ }
22
+ }
23
+ }
results/Clustering/scores_livedoor_news.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "v_measure_score",
3
+ "metric_value": 0.5739739304506893,
4
+ "details": {
5
+ "optimal_clustering_model_name": "BisectingKMeans",
6
+ "val_scores": {
7
+ "MiniBatchKMeans": {
8
+ "v_measure_score": 0.5515315083996958,
9
+ "homogeneity_score": 0.540996148835059,
10
+ "completeness_score": 0.5624853486641362
11
+ },
12
+ "AgglomerativeClustering": {
13
+ "v_measure_score": 0.5851108907607359,
14
+ "homogeneity_score": 0.5574200221929413,
15
+ "completeness_score": 0.615696764056103
16
+ },
17
+ "BisectingKMeans": {
18
+ "v_measure_score": 0.5992730974248482,
19
+ "homogeneity_score": 0.5944306847450772,
20
+ "completeness_score": 0.6041950536154801
21
+ },
22
+ "Birch": {
23
+ "v_measure_score": 0.5851848221376154,
24
+ "homogeneity_score": 0.5574904547047808,
25
+ "completeness_score": 0.6157745600948122
26
+ }
27
+ },
28
+ "test_scores": {
29
+ "BisectingKMeans": {
30
+ "v_measure_score": 0.5739739304506893,
31
+ "homogeneity_score": 0.5568637819003157,
32
+ "completeness_score": 0.5921688597800226
33
+ }
34
+ }
35
+ }
36
+ }
results/Clustering/scores_mewsc16.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "v_measure_score",
3
+ "metric_value": 0.4954965558606599,
4
+ "details": {
5
+ "optimal_clustering_model_name": "AgglomerativeClustering",
6
+ "val_scores": {
7
+ "MiniBatchKMeans": {
8
+ "v_measure_score": 0.4721527268664167,
9
+ "homogeneity_score": 0.5136266029271387,
10
+ "completeness_score": 0.4368762239322192
11
+ },
12
+ "AgglomerativeClustering": {
13
+ "v_measure_score": 0.5470131408248342,
14
+ "homogeneity_score": 0.5855979961031388,
15
+ "completeness_score": 0.5131986538882831
16
+ },
17
+ "BisectingKMeans": {
18
+ "v_measure_score": 0.3922707477594705,
19
+ "homogeneity_score": 0.4278917603414956,
20
+ "completeness_score": 0.3621246934158807
21
+ },
22
+ "Birch": {
23
+ "v_measure_score": 0.5470131408248342,
24
+ "homogeneity_score": 0.5855979961031388,
25
+ "completeness_score": 0.5131986538882831
26
+ }
27
+ },
28
+ "test_scores": {
29
+ "AgglomerativeClustering": {
30
+ "v_measure_score": 0.4954965558606599,
31
+ "homogeneity_score": 0.522186969924259,
32
+ "completeness_score": 0.47140190625618494
33
+ }
34
+ }
35
+ }
36
+ }
results/PairClassification/scores_paws_x_ja.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "binary_f1",
3
+ "metric_value": 0.6236711552090716,
4
+ "details": {
5
+ "optimal_distance_metric": "dot_similarities",
6
+ "val_scores": {
7
+ "cosine_distances": {
8
+ "accuracy": 0.573,
9
+ "accuracy_threshold": 0.36769089102745056,
10
+ "binary_f1": 0.5979670522257273,
11
+ "binary_f1_threshold": 1.0
12
+ },
13
+ "manhatten_distances": {
14
+ "accuracy": 0.604,
15
+ "accuracy_threshold": 789.7718505859375,
16
+ "binary_f1": 0.6019760056457304,
17
+ "binary_f1_threshold": 6190.7177734375
18
+ },
19
+ "euclidean_distances": {
20
+ "accuracy": 0.6045,
21
+ "accuracy_threshold": 22.832660675048828,
22
+ "binary_f1": 0.6019760056457304,
23
+ "binary_f1_threshold": 175.00918579101562
24
+ },
25
+ "dot_similarities": {
26
+ "accuracy": 0.577,
27
+ "accuracy_threshold": 28862.74609375,
28
+ "binary_f1": 0.603399433427762,
29
+ "binary_f1_threshold": 18507.880859375
30
+ }
31
+ },
32
+ "test_scores": {
33
+ "dot_similarities": {
34
+ "accuracy": 0.5635,
35
+ "accuracy_threshold": 28862.74609375,
36
+ "binary_f1": 0.6236711552090716,
37
+ "binary_f1_threshold": 18507.880859375
38
+ }
39
+ }
40
+ }
41
+ }
results/Reranking/scores_esci.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "ndcg@10",
3
+ "metric_value": 0.9357116238638268,
4
+ "details": {
5
+ "optimal_distance_metric": "euclidean_distance",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "ndcg@10": 0.9500953468155826,
9
+ "ndcg@20": 0.9602754278591416,
10
+ "ndcg@40": 0.9675518837921879
11
+ },
12
+ "dot_score": {
13
+ "ndcg@10": 0.9427565724100708,
14
+ "ndcg@20": 0.9545726032461535,
15
+ "ndcg@40": 0.9624774804074006
16
+ },
17
+ "euclidean_distance": {
18
+ "ndcg@10": 0.9501614180478811,
19
+ "ndcg@20": 0.9600756632519867,
20
+ "ndcg@40": 0.9672878521654014
21
+ }
22
+ },
23
+ "test_scores": {
24
+ "euclidean_distance": {
25
+ "ndcg@10": 0.9357116238638268,
26
+ "ndcg@20": 0.9514444389357,
27
+ "ndcg@40": 0.9602841337071619
28
+ }
29
+ }
30
+ }
31
+ }
results/Retrieval/scores_jagovfaqs_22k.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "ndcg@10",
3
+ "metric_value": 0.7936169854294086,
4
+ "details": {
5
+ "optimal_distance_metric": "cosine_similarity",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "accuracy@1": 0.6741737350102369,
9
+ "accuracy@3": 0.8370868675051184,
10
+ "accuracy@5": 0.8792044457443697,
11
+ "accuracy@10": 0.9157648435214976,
12
+ "ndcg@10": 0.8007799864324369,
13
+ "mrr@10": 0.7632489078306575
14
+ },
15
+ "dot_score": {
16
+ "accuracy@1": 0.5633226089499854,
17
+ "accuracy@3": 0.7505118455688798,
18
+ "accuracy@5": 0.8113483474700205,
19
+ "accuracy@10": 0.8754021643755484,
20
+ "ndcg@10": 0.7208761856444875,
21
+ "mrr@10": 0.6712681699373708
22
+ },
23
+ "euclidean_distance": {
24
+ "accuracy@1": 0.6744662181924539,
25
+ "accuracy@3": 0.8356244515940333,
26
+ "accuracy@5": 0.8751096811933314,
27
+ "accuracy@10": 0.9116700789704592,
28
+ "ndcg@10": 0.7987606332412315,
29
+ "mrr@10": 0.7619904176938394
30
+ }
31
+ },
32
+ "test_scores": {
33
+ "cosine_similarity": {
34
+ "accuracy@1": 0.6646198830409357,
35
+ "accuracy@3": 0.82953216374269,
36
+ "accuracy@5": 0.8707602339181286,
37
+ "accuracy@10": 0.9128654970760234,
38
+ "ndcg@10": 0.7936169854294086,
39
+ "mrr@10": 0.7548609950802945
40
+ }
41
+ }
42
+ }
43
+ }
results/Retrieval/scores_jaqket.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "ndcg@10",
3
+ "metric_value": 0.6851508044977195,
4
+ "details": {
5
+ "optimal_distance_metric": "cosine_similarity",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "accuracy@1": 0.5346733668341709,
9
+ "accuracy@3": 0.714572864321608,
10
+ "accuracy@5": 0.7698492462311558,
11
+ "accuracy@10": 0.828140703517588,
12
+ "ndcg@10": 0.682570463755056,
13
+ "mrr@10": 0.6357936507936508
14
+ },
15
+ "dot_score": {
16
+ "accuracy@1": 0.4442211055276382,
17
+ "accuracy@3": 0.6090452261306533,
18
+ "accuracy@5": 0.6753768844221105,
19
+ "accuracy@10": 0.7467336683417085,
20
+ "ndcg@10": 0.5922822430922994,
21
+ "mrr@10": 0.5432818856185687
22
+ },
23
+ "euclidean_distance": {
24
+ "accuracy@1": 0.5085427135678392,
25
+ "accuracy@3": 0.6984924623115578,
26
+ "accuracy@5": 0.7557788944723618,
27
+ "accuracy@10": 0.807035175879397,
28
+ "ndcg@10": 0.6603163598862779,
29
+ "mrr@10": 0.612886256680226
30
+ }
31
+ },
32
+ "test_scores": {
33
+ "cosine_similarity": {
34
+ "accuracy@1": 0.5336008024072216,
35
+ "accuracy@3": 0.7261785356068204,
36
+ "accuracy@5": 0.7773319959879639,
37
+ "accuracy@10": 0.827482447342026,
38
+ "ndcg@10": 0.6851508044977195,
39
+ "mrr@10": 0.638956154176816
40
+ }
41
+ }
42
+ }
43
+ }
results/Retrieval/scores_mrtydi.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "ndcg@10",
3
+ "metric_value": 0.4192795726565468,
4
+ "details": {
5
+ "optimal_distance_metric": "euclidean_distance",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "accuracy@1": 0.3125,
9
+ "accuracy@3": 0.49137931034482757,
10
+ "accuracy@5": 0.5614224137931034,
11
+ "accuracy@10": 0.6443965517241379,
12
+ "ndcg@10": 0.47285001680703276,
13
+ "mrr@10": 0.41843955254515547
14
+ },
15
+ "dot_score": {
16
+ "accuracy@1": 0.05387931034482758,
17
+ "accuracy@3": 0.11961206896551724,
18
+ "accuracy@5": 0.16056034482758622,
19
+ "accuracy@10": 0.23060344827586207,
20
+ "ndcg@10": 0.1307756460179494,
21
+ "mrr@10": 0.1003318281335523
22
+ },
23
+ "euclidean_distance": {
24
+ "accuracy@1": 0.33405172413793105,
25
+ "accuracy@3": 0.509698275862069,
26
+ "accuracy@5": 0.5818965517241379,
27
+ "accuracy@10": 0.6605603448275862,
28
+ "ndcg@10": 0.4910721986056566,
29
+ "mrr@10": 0.4374769088669945
30
+ }
31
+ },
32
+ "test_scores": {
33
+ "euclidean_distance": {
34
+ "accuracy@1": 0.26944444444444443,
35
+ "accuracy@3": 0.4583333333333333,
36
+ "accuracy@5": 0.5541666666666667,
37
+ "accuracy@10": 0.6388888888888888,
38
+ "ndcg@10": 0.4192795726565468,
39
+ "mrr@10": 0.38793099647266294
40
+ }
41
+ }
42
+ }
43
+ }
results/Retrieval/scores_nlp_journal_abs_intro.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "ndcg@10",
3
+ "metric_value": 0.9752397041145251,
4
+ "details": {
5
+ "optimal_distance_metric": "cosine_similarity",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "accuracy@1": 0.9672131147540983,
9
+ "accuracy@3": 0.9836065573770492,
10
+ "accuracy@5": 0.9918032786885246,
11
+ "accuracy@10": 0.9918032786885246,
12
+ "ndcg@10": 0.9810863611902975,
13
+ "mrr@10": 0.9774590163934426
14
+ },
15
+ "dot_score": {
16
+ "accuracy@1": 0.9590163934426229,
17
+ "accuracy@3": 0.9836065573770492,
18
+ "accuracy@5": 0.9918032786885246,
19
+ "accuracy@10": 0.9918032786885246,
20
+ "ndcg@10": 0.9780611952359652,
21
+ "mrr@10": 0.9733606557377049
22
+ },
23
+ "euclidean_distance": {
24
+ "accuracy@1": 0.9672131147540983,
25
+ "accuracy@3": 0.9836065573770492,
26
+ "accuracy@5": 0.9918032786885246,
27
+ "accuracy@10": 0.9918032786885246,
28
+ "ndcg@10": 0.9800131664888921,
29
+ "mrr@10": 0.9760928961748634
30
+ }
31
+ },
32
+ "test_scores": {
33
+ "cosine_similarity": {
34
+ "accuracy@1": 0.9491869918699187,
35
+ "accuracy@3": 0.9817073170731707,
36
+ "accuracy@5": 0.9898373983739838,
37
+ "accuracy@10": 0.9979674796747967,
38
+ "ndcg@10": 0.9752397041145251,
39
+ "mrr@10": 0.9678095560717512
40
+ }
41
+ }
42
+ }
43
+ }
results/Retrieval/scores_nlp_journal_title_abs.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "ndcg@10",
3
+ "metric_value": 0.98790129680604,
4
+ "details": {
5
+ "optimal_distance_metric": "euclidean_distance",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "accuracy@1": 0.9590163934426229,
9
+ "accuracy@3": 0.9836065573770492,
10
+ "accuracy@5": 0.9918032786885246,
11
+ "accuracy@10": 0.9918032786885246,
12
+ "ndcg@10": 0.9780611952359652,
13
+ "mrr@10": 0.9733606557377049
14
+ },
15
+ "dot_score": {
16
+ "accuracy@1": 0.9426229508196722,
17
+ "accuracy@3": 0.9836065573770492,
18
+ "accuracy@5": 0.9918032786885246,
19
+ "accuracy@10": 0.9918032786885246,
20
+ "ndcg@10": 0.9698644739244898,
21
+ "mrr@10": 0.9624316939890709
22
+ },
23
+ "euclidean_distance": {
24
+ "accuracy@1": 0.9672131147540983,
25
+ "accuracy@3": 0.9836065573770492,
26
+ "accuracy@5": 0.9918032786885246,
27
+ "accuracy@10": 0.9918032786885246,
28
+ "ndcg@10": 0.9810863611902975,
29
+ "mrr@10": 0.9774590163934426
30
+ }
31
+ },
32
+ "test_scores": {
33
+ "euclidean_distance": {
34
+ "accuracy@1": 0.975609756097561,
35
+ "accuracy@3": 0.9959349593495935,
36
+ "accuracy@5": 0.9959349593495935,
37
+ "accuracy@10": 0.9959349593495935,
38
+ "ndcg@10": 0.98790129680604,
39
+ "mrr@10": 0.9850948509485096
40
+ }
41
+ }
42
+ }
43
+ }
results/Retrieval/scores_nlp_journal_title_intro.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "ndcg@10",
3
+ "metric_value": 0.935404667723217,
4
+ "details": {
5
+ "optimal_distance_metric": "cosine_similarity",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "accuracy@1": 0.8852459016393442,
9
+ "accuracy@3": 0.9590163934426229,
10
+ "accuracy@5": 0.9672131147540983,
11
+ "accuracy@10": 0.9836065573770492,
12
+ "ndcg@10": 0.9379859904574276,
13
+ "mrr@10": 0.923087431693989
14
+ },
15
+ "dot_score": {
16
+ "accuracy@1": 0.7786885245901639,
17
+ "accuracy@3": 0.9180327868852459,
18
+ "accuracy@5": 0.9508196721311475,
19
+ "accuracy@10": 0.9754098360655737,
20
+ "ndcg@10": 0.8867916105948846,
21
+ "mrr@10": 0.8573185011709602
22
+ },
23
+ "euclidean_distance": {
24
+ "accuracy@1": 0.860655737704918,
25
+ "accuracy@3": 0.9590163934426229,
26
+ "accuracy@5": 0.9672131147540983,
27
+ "accuracy@10": 0.9754098360655737,
28
+ "ndcg@10": 0.9264675321320149,
29
+ "mrr@10": 0.9099726775956284
30
+ }
31
+ },
32
+ "test_scores": {
33
+ "cosine_similarity": {
34
+ "accuracy@1": 0.8760162601626016,
35
+ "accuracy@3": 0.9532520325203252,
36
+ "accuracy@5": 0.9695121951219512,
37
+ "accuracy@10": 0.9878048780487805,
38
+ "ndcg@10": 0.935404667723217,
39
+ "mrr@10": 0.9182717124790296
40
+ }
41
+ }
42
+ }
43
+ }
results/STS/scores_jsick.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "spearman",
3
+ "metric_value": 0.818348421573557,
4
+ "details": {
5
+ "optimal_similarity_metric": "cosine_similarity",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "pearson": 0.835308064752953,
9
+ "spearman": 0.8272512935151636
10
+ },
11
+ "manhatten_distance": {
12
+ "pearson": 0.8389303465274891,
13
+ "spearman": 0.8219151654579893
14
+ },
15
+ "euclidean_distance": {
16
+ "pearson": 0.8389303465274891,
17
+ "spearman": 0.8219151654579893
18
+ },
19
+ "dot_score": {
20
+ "pearson": 0.8246951338051995,
21
+ "spearman": 0.8068593942621228
22
+ }
23
+ },
24
+ "test_scores": {
25
+ "cosine_similarity": {
26
+ "pearson": 0.8249749618012283,
27
+ "spearman": 0.818348421573557
28
+ }
29
+ }
30
+ }
31
+ }
results/STS/scores_jsts.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "spearman",
3
+ "metric_value": 0.8444160195227215,
4
+ "details": {
5
+ "optimal_similarity_metric": "cosine_similarity",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "pearson": 0.8474526069337475,
9
+ "spearman": 0.8084969817527035
10
+ },
11
+ "manhatten_distance": {
12
+ "pearson": 0.8399416970995852,
13
+ "spearman": 0.8066658111776235
14
+ },
15
+ "euclidean_distance": {
16
+ "pearson": 0.8399416970995852,
17
+ "spearman": 0.8066658111776235
18
+ },
19
+ "dot_score": {
20
+ "pearson": 0.8298431009782351,
21
+ "spearman": 0.7888123463133008
22
+ }
23
+ },
24
+ "test_scores": {
25
+ "cosine_similarity": {
26
+ "pearson": 0.8792858102276115,
27
+ "spearman": 0.8444160195227215
28
+ }
29
+ }
30
+ }
31
+ }
results/summary.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "Classification": {
3
+ "amazon_counterfactual_classification": {
4
+ "macro_f1": 0.7719949223708622
5
+ },
6
+ "amazon_review_classification": {
7
+ "macro_f1": 0.5925073173503907
8
+ },
9
+ "massive_intent_classification": {
10
+ "macro_f1": 0.8253141488047901
11
+ },
12
+ "massive_scenario_classification": {
13
+ "macro_f1": 0.8980428060442256
14
+ }
15
+ },
16
+ "Reranking": {
17
+ "esci": {
18
+ "ndcg@10": 0.9357116238638268
19
+ }
20
+ },
21
+ "Retrieval": {
22
+ "jagovfaqs_22k": {
23
+ "ndcg@10": 0.7936169854294086
24
+ },
25
+ "nlp_journal_abs_intro": {
26
+ "ndcg@10": 0.9752397041145251
27
+ },
28
+ "nlp_journal_title_abs": {
29
+ "ndcg@10": 0.98790129680604
30
+ },
31
+ "nlp_journal_title_intro": {
32
+ "ndcg@10": 0.935404667723217
33
+ },
34
+ "jaqket": {
35
+ "ndcg@10": 0.6851508044977195
36
+ },
37
+ "mrtydi": {
38
+ "ndcg@10": 0.4192795726565468
39
+ }
40
+ },
41
+ "STS": {
42
+ "jsick": {
43
+ "spearman": 0.818348421573557
44
+ },
45
+ "jsts": {
46
+ "spearman": 0.8444160195227215
47
+ }
48
+ },
49
+ "Clustering": {
50
+ "livedoor_news": {
51
+ "v_measure_score": 0.5739739304506893
52
+ },
53
+ "mewsc16": {
54
+ "v_measure_score": 0.4954965558606599
55
+ }
56
+ },
57
+ "PairClassification": {
58
+ "paws_x_ja": {
59
+ "binary_f1": 0.6236711552090716
60
+ }
61
+ }
62
+ }