initial commit
Browse files- LICENSE.txt +412 -0
- config.json +43 -0
- model.safetensors +3 -0
- modeling_plamo.py +1089 -0
- special_tokens_map.json +24 -0
- tokenization_plamo.py +191 -0
- tokenizer.model +3 -0
- tokenizer_config.json +57 -0
LICENSE.txt
ADDED
@@ -0,0 +1,412 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Copyright 2025- Preferred Networks, Inc. All rights reserved.
|
2 |
+
|
3 |
+
Apache License
|
4 |
+
Version 2.0, January 2004
|
5 |
+
http://www.apache.org/licenses/
|
6 |
+
|
7 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
8 |
+
|
9 |
+
1. Definitions.
|
10 |
+
|
11 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
12 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
13 |
+
|
14 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
15 |
+
the copyright owner that is granting the License.
|
16 |
+
|
17 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
18 |
+
other entities that control, are controlled by, or are under common
|
19 |
+
control with that entity. For the purposes of this definition,
|
20 |
+
"control" means (i) the power, direct or indirect, to cause the
|
21 |
+
direction or management of such entity, whether by contract or
|
22 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
23 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
24 |
+
|
25 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
26 |
+
exercising permissions granted by this License.
|
27 |
+
|
28 |
+
"Source" form shall mean the preferred form for making modifications,
|
29 |
+
including but not limited to software source code, documentation
|
30 |
+
source, and configuration files.
|
31 |
+
|
32 |
+
"Object" form shall mean any form resulting from mechanical
|
33 |
+
transformation or translation of a Source form, including but
|
34 |
+
not limited to compiled object code, generated documentation,
|
35 |
+
and conversions to other media types.
|
36 |
+
|
37 |
+
"Work" shall mean the work of authorship, whether in Source or
|
38 |
+
Object form, made available under the License, as indicated by a
|
39 |
+
copyright notice that is included in or attached to the work
|
40 |
+
(an example is provided in the Appendix below).
|
41 |
+
|
42 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
43 |
+
form, that is based on (or derived from) the Work and for which the
|
44 |
+
editorial revisions, annotations, elaborations, or other modifications
|
45 |
+
represent, as a whole, an original work of authorship. For the purposes
|
46 |
+
of this License, Derivative Works shall not include works that remain
|
47 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
48 |
+
the Work and Derivative Works thereof.
|
49 |
+
|
50 |
+
"Contribution" shall mean any work of authorship, including
|
51 |
+
the original version of the Work and any modifications or additions
|
52 |
+
to that Work or Derivative Works thereof, that is intentionally
|
53 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
54 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
55 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
56 |
+
means any form of electronic, verbal, or written communication sent
|
57 |
+
to the Licensor or its representatives, including but not limited to
|
58 |
+
communication on electronic mailing lists, source code control systems,
|
59 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
60 |
+
Licensor for the purpose of discussing and improving the Work, but
|
61 |
+
excluding communication that is conspicuously marked or otherwise
|
62 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
63 |
+
|
64 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
65 |
+
on behalf of whom a Contribution has been received by Licensor and
|
66 |
+
subsequently incorporated within the Work.
|
67 |
+
|
68 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
69 |
+
this License, each Contributor hereby grants to You a perpetual,
|
70 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
71 |
+
copyright license to reproduce, prepare Derivative Works of,
|
72 |
+
publicly display, publicly perform, sublicense, and distribute the
|
73 |
+
Work and such Derivative Works in Source or Object form.
|
74 |
+
|
75 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
76 |
+
this License, each Contributor hereby grants to You a perpetual,
|
77 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
78 |
+
(except as stated in this section) patent license to make, have made,
|
79 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
80 |
+
where such license applies only to those patent claims licensable
|
81 |
+
by such Contributor that are necessarily infringed by their
|
82 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
83 |
+
with the Work to which such Contribution(s) was submitted. If You
|
84 |
+
institute patent litigation against any entity (including a
|
85 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
86 |
+
or a Contribution incorporated within the Work constitutes direct
|
87 |
+
or contributory patent infringement, then any patent licenses
|
88 |
+
granted to You under this License for that Work shall terminate
|
89 |
+
as of the date such litigation is filed.
|
90 |
+
|
91 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
92 |
+
Work or Derivative Works thereof in any medium, with or without
|
93 |
+
modifications, and in Source or Object form, provided that You
|
94 |
+
meet the following conditions:
|
95 |
+
|
96 |
+
(a) You must give any other recipients of the Work or
|
97 |
+
Derivative Works a copy of this License; and
|
98 |
+
|
99 |
+
(b) You must cause any modified files to carry prominent notices
|
100 |
+
stating that You changed the files; and
|
101 |
+
|
102 |
+
(c) You must retain, in the Source form of any Derivative Works
|
103 |
+
that You distribute, all copyright, patent, trademark, and
|
104 |
+
attribution notices from the Source form of the Work,
|
105 |
+
excluding those notices that do not pertain to any part of
|
106 |
+
the Derivative Works; and
|
107 |
+
|
108 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
109 |
+
distribution, then any Derivative Works that You distribute must
|
110 |
+
include a readable copy of the attribution notices contained
|
111 |
+
within such NOTICE file, excluding those notices that do not
|
112 |
+
pertain to any part of the Derivative Works, in at least one
|
113 |
+
of the following places: within a NOTICE text file distributed
|
114 |
+
as part of the Derivative Works; within the Source form or
|
115 |
+
documentation, if provided along with the Derivative Works; or,
|
116 |
+
within a display generated by the Derivative Works, if and
|
117 |
+
wherever such third-party notices normally appear. The contents
|
118 |
+
of the NOTICE file are for informational purposes only and
|
119 |
+
do not modify the License. You may add Your own attribution
|
120 |
+
notices within Derivative Works that You distribute, alongside
|
121 |
+
or as an addendum to the NOTICE text from the Work, provided
|
122 |
+
that such additional attribution notices cannot be construed
|
123 |
+
as modifying the License.
|
124 |
+
|
125 |
+
You may add Your own copyright statement to Your modifications and
|
126 |
+
may provide additional or different license terms and conditions
|
127 |
+
for use, reproduction, or distribution of Your modifications, or
|
128 |
+
for any such Derivative Works as a whole, provided Your use,
|
129 |
+
reproduction, and distribution of the Work otherwise complies with
|
130 |
+
the conditions stated in this License.
|
131 |
+
|
132 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
133 |
+
any Contribution intentionally submitted for inclusion in the Work
|
134 |
+
by You to the Licensor shall be under the terms and conditions of
|
135 |
+
this License, without any additional terms or conditions.
|
136 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
137 |
+
the terms of any separate license agreement you may have executed
|
138 |
+
with Licensor regarding such Contributions.
|
139 |
+
|
140 |
+
6. Trademarks. This License does not grant permission to use the trade
|
141 |
+
names, trademarks, service marks, or product names of the Licensor,
|
142 |
+
except as required for reasonable and customary use in describing the
|
143 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
144 |
+
|
145 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
146 |
+
agreed to in writing, Licensor provides the Work (and each
|
147 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
148 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
149 |
+
implied, including, without limitation, any warranties or conditions
|
150 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
151 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
152 |
+
appropriateness of using or redistributing the Work and assume any
|
153 |
+
risks associated with Your exercise of permissions under this License.
|
154 |
+
|
155 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
156 |
+
whether in tort (including negligence), contract, or otherwise,
|
157 |
+
unless required by applicable law (such as deliberate and grossly
|
158 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
159 |
+
liable to You for damages, including any direct, indirect, special,
|
160 |
+
incidental, or consequential damages of any character arising as a
|
161 |
+
result of this License or out of the use or inability to use the
|
162 |
+
Work (including but not limited to damages for loss of goodwill,
|
163 |
+
work stoppage, computer failure or malfunction, or any and all
|
164 |
+
other commercial damages or losses), even if such Contributor
|
165 |
+
has been advised of the possibility of such damages.
|
166 |
+
|
167 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
168 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
169 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
170 |
+
or other liability obligations and/or rights consistent with this
|
171 |
+
License. However, in accepting such obligations, You may act only
|
172 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
173 |
+
of any other Contributor, and only if You agree to indemnify,
|
174 |
+
defend, and hold each Contributor harmless for any liability
|
175 |
+
incurred by, or claims asserted against, such Contributor by reason
|
176 |
+
of your accepting any such warranty or additional liability.
|
177 |
+
|
178 |
+
END OF TERMS AND CONDITIONS
|
179 |
+
|
180 |
+
APPENDIX: How to apply the Apache License to your work.
|
181 |
+
|
182 |
+
To apply the Apache License to your work, attach the following
|
183 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
184 |
+
replaced with your own identifying information. (Don't include
|
185 |
+
the brackets!) The text should be enclosed in the appropriate
|
186 |
+
comment syntax for the file format. We also recommend that a
|
187 |
+
file or class name and description of purpose be included on the
|
188 |
+
same "printed page" as the copyright notice for easier
|
189 |
+
identification within third-party archives.
|
190 |
+
|
191 |
+
Copyright [yyyy] [name of copyright owner]
|
192 |
+
|
193 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
194 |
+
you may not use this file except in compliance with the License.
|
195 |
+
You may obtain a copy of the License at
|
196 |
+
|
197 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
198 |
+
|
199 |
+
Unless required by applicable law or agreed to in writing, software
|
200 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
201 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
202 |
+
See the License for the specific language governing permissions and
|
203 |
+
limitations under the License.
|
204 |
+
|
205 |
+
---
|
206 |
+
|
207 |
+
This software contains modified codes from huggingface trainsformers library which is released under Apache v2.0 license.
|
208 |
+
|
209 |
+
---
|
210 |
+
Copyright 2018- The Hugging Face team. All rights reserved.
|
211 |
+
|
212 |
+
Apache License
|
213 |
+
Version 2.0, January 2004
|
214 |
+
http://www.apache.org/licenses/
|
215 |
+
|
216 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
217 |
+
|
218 |
+
1. Definitions.
|
219 |
+
|
220 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
221 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
222 |
+
|
223 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
224 |
+
the copyright owner that is granting the License.
|
225 |
+
|
226 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
227 |
+
other entities that control, are controlled by, or are under common
|
228 |
+
control with that entity. For the purposes of this definition,
|
229 |
+
"control" means (i) the power, direct or indirect, to cause the
|
230 |
+
direction or management of such entity, whether by contract or
|
231 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
232 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
233 |
+
|
234 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
235 |
+
exercising permissions granted by this License.
|
236 |
+
|
237 |
+
"Source" form shall mean the preferred form for making modifications,
|
238 |
+
including but not limited to software source code, documentation
|
239 |
+
source, and configuration files.
|
240 |
+
|
241 |
+
"Object" form shall mean any form resulting from mechanical
|
242 |
+
transformation or translation of a Source form, including but
|
243 |
+
not limited to compiled object code, generated documentation,
|
244 |
+
and conversions to other media types.
|
245 |
+
|
246 |
+
"Work" shall mean the work of authorship, whether in Source or
|
247 |
+
Object form, made available under the License, as indicated by a
|
248 |
+
copyright notice that is included in or attached to the work
|
249 |
+
(an example is provided in the Appendix below).
|
250 |
+
|
251 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
252 |
+
form, that is based on (or derived from) the Work and for which the
|
253 |
+
editorial revisions, annotations, elaborations, or other modifications
|
254 |
+
represent, as a whole, an original work of authorship. For the purposes
|
255 |
+
of this License, Derivative Works shall not include works that remain
|
256 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
257 |
+
the Work and Derivative Works thereof.
|
258 |
+
|
259 |
+
"Contribution" shall mean any work of authorship, including
|
260 |
+
the original version of the Work and any modifications or additions
|
261 |
+
to that Work or Derivative Works thereof, that is intentionally
|
262 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
263 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
264 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
265 |
+
means any form of electronic, verbal, or written communication sent
|
266 |
+
to the Licensor or its representatives, including but not limited to
|
267 |
+
communication on electronic mailing lists, source code control systems,
|
268 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
269 |
+
Licensor for the purpose of discussing and improving the Work, but
|
270 |
+
excluding communication that is conspicuously marked or otherwise
|
271 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
272 |
+
|
273 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
274 |
+
on behalf of whom a Contribution has been received by Licensor and
|
275 |
+
subsequently incorporated within the Work.
|
276 |
+
|
277 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
278 |
+
this License, each Contributor hereby grants to You a perpetual,
|
279 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
280 |
+
copyright license to reproduce, prepare Derivative Works of,
|
281 |
+
publicly display, publicly perform, sublicense, and distribute the
|
282 |
+
Work and such Derivative Works in Source or Object form.
|
283 |
+
|
284 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
285 |
+
this License, each Contributor hereby grants to You a perpetual,
|
286 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
287 |
+
(except as stated in this section) patent license to make, have made,
|
288 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
289 |
+
where such license applies only to those patent claims licensable
|
290 |
+
by such Contributor that are necessarily infringed by their
|
291 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
292 |
+
with the Work to which such Contribution(s) was submitted. If You
|
293 |
+
institute patent litigation against any entity (including a
|
294 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
295 |
+
or a Contribution incorporated within the Work constitutes direct
|
296 |
+
or contributory patent infringement, then any patent licenses
|
297 |
+
granted to You under this License for that Work shall terminate
|
298 |
+
as of the date such litigation is filed.
|
299 |
+
|
300 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
301 |
+
Work or Derivative Works thereof in any medium, with or without
|
302 |
+
modifications, and in Source or Object form, provided that You
|
303 |
+
meet the following conditions:
|
304 |
+
|
305 |
+
(a) You must give any other recipients of the Work or
|
306 |
+
Derivative Works a copy of this License; and
|
307 |
+
|
308 |
+
(b) You must cause any modified files to carry prominent notices
|
309 |
+
stating that You changed the files; and
|
310 |
+
|
311 |
+
(c) You must retain, in the Source form of any Derivative Works
|
312 |
+
that You distribute, all copyright, patent, trademark, and
|
313 |
+
attribution notices from the Source form of the Work,
|
314 |
+
excluding those notices that do not pertain to any part of
|
315 |
+
the Derivative Works; and
|
316 |
+
|
317 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
318 |
+
distribution, then any Derivative Works that You distribute must
|
319 |
+
include a readable copy of the attribution notices contained
|
320 |
+
within such NOTICE file, excluding those notices that do not
|
321 |
+
pertain to any part of the Derivative Works, in at least one
|
322 |
+
of the following places: within a NOTICE text file distributed
|
323 |
+
as part of the Derivative Works; within the Source form or
|
324 |
+
documentation, if provided along with the Derivative Works; or,
|
325 |
+
within a display generated by the Derivative Works, if and
|
326 |
+
wherever such third-party notices normally appear. The contents
|
327 |
+
of the NOTICE file are for informational purposes only and
|
328 |
+
do not modify the License. You may add Your own attribution
|
329 |
+
notices within Derivative Works that You distribute, alongside
|
330 |
+
or as an addendum to the NOTICE text from the Work, provided
|
331 |
+
that such additional attribution notices cannot be construed
|
332 |
+
as modifying the License.
|
333 |
+
|
334 |
+
You may add Your own copyright statement to Your modifications and
|
335 |
+
may provide additional or different license terms and conditions
|
336 |
+
for use, reproduction, or distribution of Your modifications, or
|
337 |
+
for any such Derivative Works as a whole, provided Your use,
|
338 |
+
reproduction, and distribution of the Work otherwise complies with
|
339 |
+
the conditions stated in this License.
|
340 |
+
|
341 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
342 |
+
any Contribution intentionally submitted for inclusion in the Work
|
343 |
+
by You to the Licensor shall be under the terms and conditions of
|
344 |
+
this License, without any additional terms or conditions.
|
345 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
346 |
+
the terms of any separate license agreement you may have executed
|
347 |
+
with Licensor regarding such Contributions.
|
348 |
+
|
349 |
+
6. Trademarks. This License does not grant permission to use the trade
|
350 |
+
names, trademarks, service marks, or product names of the Licensor,
|
351 |
+
except as required for reasonable and customary use in describing the
|
352 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
353 |
+
|
354 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
355 |
+
agreed to in writing, Licensor provides the Work (and each
|
356 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
357 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
358 |
+
implied, including, without limitation, any warranties or conditions
|
359 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
360 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
361 |
+
appropriateness of using or redistributing the Work and assume any
|
362 |
+
risks associated with Your exercise of permissions under this License.
|
363 |
+
|
364 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
365 |
+
whether in tort (including negligence), contract, or otherwise,
|
366 |
+
unless required by applicable law (such as deliberate and grossly
|
367 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
368 |
+
liable to You for damages, including any direct, indirect, special,
|
369 |
+
incidental, or consequential damages of any character arising as a
|
370 |
+
result of this License or out of the use or inability to use the
|
371 |
+
Work (including but not limited to damages for loss of goodwill,
|
372 |
+
work stoppage, computer failure or malfunction, or any and all
|
373 |
+
other commercial damages or losses), even if such Contributor
|
374 |
+
has been advised of the possibility of such damages.
|
375 |
+
|
376 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
377 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
378 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
379 |
+
or other liability obligations and/or rights consistent with this
|
380 |
+
License. However, in accepting such obligations, You may act only
|
381 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
382 |
+
of any other Contributor, and only if You agree to indemnify,
|
383 |
+
defend, and hold each Contributor harmless for any liability
|
384 |
+
incurred by, or claims asserted against, such Contributor by reason
|
385 |
+
of your accepting any such warranty or additional liability.
|
386 |
+
|
387 |
+
END OF TERMS AND CONDITIONS
|
388 |
+
|
389 |
+
APPENDIX: How to apply the Apache License to your work.
|
390 |
+
|
391 |
+
To apply the Apache License to your work, attach the following
|
392 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
393 |
+
replaced with your own identifying information. (Don't include
|
394 |
+
the brackets!) The text should be enclosed in the appropriate
|
395 |
+
comment syntax for the file format. We also recommend that a
|
396 |
+
file or class name and description of purpose be included on the
|
397 |
+
same "printed page" as the copyright notice for easier
|
398 |
+
identification within third-party archives.
|
399 |
+
|
400 |
+
Copyright [yyyy] [name of copyright owner]
|
401 |
+
|
402 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
403 |
+
you may not use this file except in compliance with the License.
|
404 |
+
You may obtain a copy of the License at
|
405 |
+
|
406 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
407 |
+
|
408 |
+
Unless required by applicable law or agreed to in writing, software
|
409 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
410 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
411 |
+
See the License for the specific language governing permissions and
|
412 |
+
limitations under the License.
|
config.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"PlamoBiModel"
|
4 |
+
],
|
5 |
+
"attention_dropout": 0.0,
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "modeling_plamo.PlamoConfig",
|
8 |
+
"AutoModel": "modeling_plamo.PlamoBiModel"
|
9 |
+
},
|
10 |
+
"bos_token_id": 1,
|
11 |
+
"capacity_factor": 1.0,
|
12 |
+
"eos_token_id": 1,
|
13 |
+
"eval_attention_n_bit": null,
|
14 |
+
"eval_mlp_n_bit": null,
|
15 |
+
"eval_offload_moe": false,
|
16 |
+
"expert_dropout": 0.0,
|
17 |
+
"fp8_accum_dtype": "bfloat16",
|
18 |
+
"group_size": 1024,
|
19 |
+
"hidden_size": 2048,
|
20 |
+
"hidden_size_per_head": 128,
|
21 |
+
"initializer_range": 0.02,
|
22 |
+
"intermediate_size": 8192,
|
23 |
+
"k_expert": null,
|
24 |
+
"linear_type": "fp8",
|
25 |
+
"max_length": 4096,
|
26 |
+
"max_position_embeddings": 4096,
|
27 |
+
"model_type": "plamo",
|
28 |
+
"n_expert": null,
|
29 |
+
"num_attention_heads": 16,
|
30 |
+
"num_hidden_layers": 16,
|
31 |
+
"num_key_value_heads": 1,
|
32 |
+
"pad_token_id": 3,
|
33 |
+
"rms_norm_eps": 1e-06,
|
34 |
+
"shared_intermediate_size": null,
|
35 |
+
"sparse_intermediate_size": null,
|
36 |
+
"sparse_step": null,
|
37 |
+
"tie_word_embeddings": false,
|
38 |
+
"tokenizer_class": "PlamoTokenizer",
|
39 |
+
"torch_dtype": "bfloat16",
|
40 |
+
"transformers_version": "4.47.0",
|
41 |
+
"use_cache": false,
|
42 |
+
"vocab_size": 50112
|
43 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0e9e26cd19d9a90dc79d1c0e8d4755d881fe984a8582d7dcd776b9adb2dcf9f1
|
3 |
+
size 2101303432
|
modeling_plamo.py
ADDED
@@ -0,0 +1,1089 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import enum
|
2 |
+
from typing import Any, List, NamedTuple, Optional, Tuple, Union
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
from torch.nn import functional as F
|
7 |
+
from transformers import AutoTokenizer, PretrainedConfig, PreTrainedModel
|
8 |
+
from transformers.modeling_attn_mask_utils import (
|
9 |
+
_prepare_4d_causal_attention_mask,
|
10 |
+
_prepare_4d_causal_attention_mask_for_sdpa,
|
11 |
+
)
|
12 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast
|
13 |
+
from transformers.tokenization_utils_base import BatchEncoding
|
14 |
+
|
15 |
+
|
16 |
+
def _swiglu(h: torch.Tensor) -> torch.Tensor:
|
17 |
+
h0, h1 = h.chunk(2, dim=-1)
|
18 |
+
return torch.nn.functional.silu(h0) * h1
|
19 |
+
|
20 |
+
|
21 |
+
class PlamoAttentionCache:
|
22 |
+
def __init__(self, key: torch.Tensor, value: torch.Tensor) -> None:
|
23 |
+
B, nh, L, c = key.shape
|
24 |
+
assert len(value.shape) == 4
|
25 |
+
assert value.shape[0] == B
|
26 |
+
assert value.shape[2] == L
|
27 |
+
self.key = key
|
28 |
+
self.value = value
|
29 |
+
|
30 |
+
def _validate(self, cache: torch.Tensor, new_tensor: torch.Tensor) -> None:
|
31 |
+
assert len(cache.shape) == 4
|
32 |
+
assert len(new_tensor.shape) == 4
|
33 |
+
assert cache.shape[0] == new_tensor.shape[0]
|
34 |
+
assert cache.shape[1] == new_tensor.shape[1]
|
35 |
+
assert cache.shape[3] == new_tensor.shape[3]
|
36 |
+
|
37 |
+
def append_cache(self, k: torch.Tensor, v: torch.Tensor) -> None:
|
38 |
+
self._validate(self.key, k)
|
39 |
+
self._validate(self.value, v)
|
40 |
+
assert k.shape[2] == v.shape[2]
|
41 |
+
self.key = torch.cat([self.key, k], dim=2)
|
42 |
+
self.value = torch.cat([self.value, v], dim=2)
|
43 |
+
|
44 |
+
def sequence_length(self) -> int:
|
45 |
+
return self.key.shape[2]
|
46 |
+
|
47 |
+
|
48 |
+
PlamoLayerCache = PlamoAttentionCache
|
49 |
+
|
50 |
+
PlamoCache = list[PlamoLayerCache]
|
51 |
+
|
52 |
+
|
53 |
+
class DecoderInput(NamedTuple):
|
54 |
+
hidden_states: torch.Tensor
|
55 |
+
position_ids: torch.Tensor
|
56 |
+
attention_mask: Optional[torch.Tensor] = None
|
57 |
+
past_key_values: Optional[PlamoCache] = None
|
58 |
+
output_hidden_states: Optional[bool] = False
|
59 |
+
output_attentions: Optional[bool] = False
|
60 |
+
use_cache: Optional[bool] = False
|
61 |
+
gradient_checkpointing: bool = False
|
62 |
+
input_ids: Optional[torch.Tensor] = None
|
63 |
+
|
64 |
+
|
65 |
+
class DecoderOutput(NamedTuple):
|
66 |
+
hidden_states: torch.Tensor
|
67 |
+
all_hidden_states: Optional[Tuple[torch.Tensor, ...]]
|
68 |
+
all_self_attns: Optional[Tuple[torch.Tensor, ...]]
|
69 |
+
next_decoder_cache: Optional[PlamoCache]
|
70 |
+
|
71 |
+
|
72 |
+
class LinearType(str, enum.Enum):
|
73 |
+
Normal = "normal"
|
74 |
+
Fp8 = "fp8"
|
75 |
+
Fp8Retain = "fp8-retain"
|
76 |
+
|
77 |
+
|
78 |
+
class PlamoConfig(PretrainedConfig): # type: ignore
|
79 |
+
model_type: str = "plamo"
|
80 |
+
|
81 |
+
def __init__(
|
82 |
+
self,
|
83 |
+
vocab_size: int = 32000,
|
84 |
+
hidden_size: int = 4096,
|
85 |
+
intermediate_size: int = 13312,
|
86 |
+
num_hidden_layers: int = 32,
|
87 |
+
num_attention_heads: int = 32,
|
88 |
+
num_key_value_heads: int = 4,
|
89 |
+
hidden_size_per_head: int = 128,
|
90 |
+
max_position_embeddings: int = 2048,
|
91 |
+
initializer_range: float = 0.02,
|
92 |
+
rms_norm_eps: float = 1e-6,
|
93 |
+
use_cache: bool = True,
|
94 |
+
tokenizer_class: str = "PlamoTokenizer",
|
95 |
+
pad_token_id: Optional[int] = None,
|
96 |
+
bos_token_id: int = 1,
|
97 |
+
eos_token_id: int = 2,
|
98 |
+
tie_word_embeddings: bool = False,
|
99 |
+
n_expert: Optional[int] = None,
|
100 |
+
k_expert: Optional[int] = None,
|
101 |
+
expert_dropout: float = 0.0,
|
102 |
+
capacity_factor: float = 1.0,
|
103 |
+
group_size: int = 1024,
|
104 |
+
sparse_step: Optional[int] = None,
|
105 |
+
sparse_intermediate_size: Optional[int] = None,
|
106 |
+
shared_intermediate_size: Optional[int] = None,
|
107 |
+
linear_type: LinearType = LinearType.Normal,
|
108 |
+
fp8_accum_dtype: Optional[str] = None,
|
109 |
+
eval_attention_n_bit: Optional[int] = None,
|
110 |
+
eval_mlp_n_bit: Optional[int] = None,
|
111 |
+
eval_offload_moe: bool = False,
|
112 |
+
attention_dropout: float = 0.0,
|
113 |
+
**kwargs: Any,
|
114 |
+
) -> None:
|
115 |
+
self.vocab_size = vocab_size
|
116 |
+
self.max_position_embeddings = max_position_embeddings
|
117 |
+
self.hidden_size = hidden_size
|
118 |
+
self.intermediate_size = intermediate_size
|
119 |
+
self.num_hidden_layers = num_hidden_layers
|
120 |
+
self.num_attention_heads = num_attention_heads
|
121 |
+
self.hidden_size_per_head = hidden_size_per_head
|
122 |
+
|
123 |
+
self.initializer_range = initializer_range
|
124 |
+
self.rms_norm_eps = rms_norm_eps
|
125 |
+
self.use_cache = use_cache
|
126 |
+
|
127 |
+
self.num_key_value_heads = num_key_value_heads
|
128 |
+
|
129 |
+
self.n_expert = n_expert
|
130 |
+
self.k_expert = k_expert
|
131 |
+
self.sparse_intermediate_size = sparse_intermediate_size
|
132 |
+
self.shared_intermediate_size = shared_intermediate_size
|
133 |
+
self.expert_dropout = expert_dropout
|
134 |
+
self.capacity_factor = capacity_factor
|
135 |
+
self.group_size = group_size
|
136 |
+
self.sparse_step = sparse_step
|
137 |
+
|
138 |
+
self.linear_type = linear_type
|
139 |
+
self.fp8_accum_dtype = fp8_accum_dtype
|
140 |
+
|
141 |
+
self.eval_attention_n_bit = eval_attention_n_bit
|
142 |
+
self.eval_mlp_n_bit = eval_mlp_n_bit
|
143 |
+
self.eval_offload_moe = eval_offload_moe
|
144 |
+
|
145 |
+
self.attention_dropout = attention_dropout
|
146 |
+
|
147 |
+
super().__init__(
|
148 |
+
tokenizer_class=tokenizer_class,
|
149 |
+
pad_token_id=pad_token_id,
|
150 |
+
bos_token_id=bos_token_id,
|
151 |
+
eos_token_id=eos_token_id,
|
152 |
+
tie_word_embeddings=tie_word_embeddings,
|
153 |
+
**kwargs,
|
154 |
+
)
|
155 |
+
|
156 |
+
|
157 |
+
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
158 |
+
def _make_causal_mask(
|
159 |
+
input_ids_shape: Tuple[int, int],
|
160 |
+
dtype: torch.dtype,
|
161 |
+
device: torch.device,
|
162 |
+
past_key_values_length: int = 0,
|
163 |
+
) -> torch.Tensor:
|
164 |
+
"""
|
165 |
+
Make causal mask used for bi-directional self-attention.
|
166 |
+
"""
|
167 |
+
bsz, tgt_len = input_ids_shape
|
168 |
+
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
|
169 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
170 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
171 |
+
mask = mask.to(dtype)
|
172 |
+
|
173 |
+
if past_key_values_length > 0:
|
174 |
+
mask = torch.cat(
|
175 |
+
[
|
176 |
+
torch.zeros(
|
177 |
+
tgt_len, past_key_values_length, dtype=dtype, device=device
|
178 |
+
),
|
179 |
+
mask,
|
180 |
+
],
|
181 |
+
dim=-1,
|
182 |
+
)
|
183 |
+
return mask[None, None, :, :].expand(
|
184 |
+
bsz, 1, tgt_len, tgt_len + past_key_values_length
|
185 |
+
)
|
186 |
+
|
187 |
+
|
188 |
+
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
189 |
+
def _expand_mask(
|
190 |
+
mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None
|
191 |
+
) -> torch.Tensor:
|
192 |
+
"""
|
193 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
194 |
+
"""
|
195 |
+
bsz, src_len = mask.size()
|
196 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
197 |
+
|
198 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
199 |
+
|
200 |
+
inverted_mask = 1.0 - expanded_mask
|
201 |
+
|
202 |
+
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) # type: ignore
|
203 |
+
|
204 |
+
|
205 |
+
class RotaryEmbedding(torch.nn.Module):
|
206 |
+
def __init__(
|
207 |
+
self,
|
208 |
+
dim: int,
|
209 |
+
max_position_embeddings: int = 2048,
|
210 |
+
base: int = 10000,
|
211 |
+
device: Optional[torch.device] = None,
|
212 |
+
) -> None:
|
213 |
+
super().__init__()
|
214 |
+
|
215 |
+
self.dim = dim
|
216 |
+
self.max_position_embeddings = max_position_embeddings
|
217 |
+
self.base = base
|
218 |
+
inv_freq = 1.0 / (
|
219 |
+
self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
|
220 |
+
)
|
221 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
222 |
+
|
223 |
+
# Build here to make `torch.jit.trace` work.
|
224 |
+
self._set_cos_sin_cache(
|
225 |
+
seq_len=max_position_embeddings,
|
226 |
+
device=self.inv_freq.device,
|
227 |
+
dtype=torch.get_default_dtype(),
|
228 |
+
)
|
229 |
+
|
230 |
+
def _set_cos_sin_cache(self, seq_len: int, device: Any, dtype: Any) -> None:
|
231 |
+
self.max_seq_len_cached = seq_len
|
232 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) # type: ignore
|
233 |
+
|
234 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
235 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
236 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
237 |
+
self.register_buffer(
|
238 |
+
"cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False
|
239 |
+
)
|
240 |
+
self.register_buffer(
|
241 |
+
"sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False
|
242 |
+
)
|
243 |
+
|
244 |
+
def forward(
|
245 |
+
self, x: torch.Tensor, seq_len: int
|
246 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
247 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
248 |
+
if seq_len > self.max_seq_len_cached:
|
249 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
250 |
+
|
251 |
+
return (
|
252 |
+
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype), # type: ignore
|
253 |
+
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype), # type: ignore
|
254 |
+
)
|
255 |
+
|
256 |
+
|
257 |
+
def _rotate_half(x: torch.Tensor) -> torch.Tensor:
|
258 |
+
"""Rotates half the hidden dims of the input."""
|
259 |
+
x1 = x[..., : x.shape[-1] // 2]
|
260 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
261 |
+
return torch.cat((-x2, x1), dim=-1)
|
262 |
+
|
263 |
+
|
264 |
+
def _rotary_pos_emb(
|
265 |
+
x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor, position_ids: torch.Tensor
|
266 |
+
) -> torch.Tensor:
|
267 |
+
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
|
268 |
+
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
|
269 |
+
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
|
270 |
+
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
271 |
+
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
272 |
+
x_embed = (x * cos) + (_rotate_half(x) * sin)
|
273 |
+
return x_embed
|
274 |
+
|
275 |
+
|
276 |
+
def _rms_norm(
|
277 |
+
hidden_states: torch.Tensor, weight: Optional[torch.Tensor], eps: float
|
278 |
+
) -> torch.Tensor:
|
279 |
+
input_dtype = hidden_states.dtype
|
280 |
+
hidden_states = hidden_states.to(torch.float32)
|
281 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
282 |
+
hidden_states = hidden_states * torch.rsqrt(variance + eps)
|
283 |
+
hidden_states = hidden_states.to(input_dtype)
|
284 |
+
if weight is not None:
|
285 |
+
hidden_states = weight * hidden_states
|
286 |
+
return hidden_states
|
287 |
+
|
288 |
+
|
289 |
+
class RMSNorm(nn.Module):
|
290 |
+
def __init__(
|
291 |
+
self,
|
292 |
+
hidden_size: int,
|
293 |
+
eps: float = 1e-6,
|
294 |
+
device: Optional[Union[torch.device, str]] = None,
|
295 |
+
) -> None:
|
296 |
+
super().__init__()
|
297 |
+
self.weight = nn.Parameter(torch.ones(hidden_size, device=device))
|
298 |
+
self.variance_epsilon = eps
|
299 |
+
|
300 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
301 |
+
return _rms_norm(hidden_states, self.weight, self.variance_epsilon)
|
302 |
+
|
303 |
+
|
304 |
+
class Attention(torch.nn.Module):
|
305 |
+
def __init__(self, config: PlamoConfig) -> None:
|
306 |
+
super().__init__()
|
307 |
+
self.config = config
|
308 |
+
self.hidden_size = config.hidden_size
|
309 |
+
head_dim = config.hidden_size_per_head
|
310 |
+
self.max_position_embeddings = config.max_position_embeddings
|
311 |
+
|
312 |
+
self.q_num_heads = config.num_attention_heads
|
313 |
+
self.qk_dim = self.v_dim = head_dim
|
314 |
+
self.k_num_heads = self.v_num_heads = config.num_key_value_heads
|
315 |
+
assert self.q_num_heads % self.k_num_heads == 0
|
316 |
+
self.n_group = self.q_num_heads // self.k_num_heads
|
317 |
+
|
318 |
+
self.q_proj_dim = self.q_num_heads * self.qk_dim
|
319 |
+
self.k_proj_dim = self.k_num_heads * self.qk_dim
|
320 |
+
self.v_proj_dim = self.k_num_heads * self.v_dim
|
321 |
+
self.qkv_proj = nn.Linear(
|
322 |
+
self.hidden_size,
|
323 |
+
self.q_proj_dim + self.k_proj_dim + self.v_proj_dim,
|
324 |
+
bias=False,
|
325 |
+
)
|
326 |
+
self.o_proj = nn.Linear(
|
327 |
+
self.q_num_heads * self.v_dim, self.hidden_size, bias=False
|
328 |
+
)
|
329 |
+
self.rotary_emb = RotaryEmbedding(
|
330 |
+
self.qk_dim, max_position_embeddings=self.max_position_embeddings
|
331 |
+
)
|
332 |
+
|
333 |
+
self.q_weight = torch.nn.Parameter(torch.ones((self.q_num_heads, self.qk_dim)))
|
334 |
+
self.k_weight = torch.nn.Parameter(torch.ones((self.k_num_heads, self.qk_dim)))
|
335 |
+
self.is_causal = True
|
336 |
+
self.attention_dropout = config.attention_dropout
|
337 |
+
|
338 |
+
def forward(
|
339 |
+
self,
|
340 |
+
hidden_states: torch.Tensor,
|
341 |
+
attention_mask: Optional[torch.Tensor] = None,
|
342 |
+
position_ids: Optional[torch.Tensor] = None,
|
343 |
+
past_key_value: Optional[PlamoLayerCache] = None,
|
344 |
+
output_attentions: bool = False,
|
345 |
+
use_cache: bool = False,
|
346 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[PlamoLayerCache]]:
|
347 |
+
bsz, q_len, _ = hidden_states.size()
|
348 |
+
|
349 |
+
qkv = self.qkv_proj(hidden_states)
|
350 |
+
query_states, key_states, value_states = torch.split(
|
351 |
+
qkv, [self.q_proj_dim, self.k_proj_dim, self.v_proj_dim], dim=-1
|
352 |
+
)
|
353 |
+
query_states = query_states.view(
|
354 |
+
bsz, q_len, self.q_num_heads, self.qk_dim
|
355 |
+
).transpose(1, 2)
|
356 |
+
key_states = key_states.view(
|
357 |
+
bsz, q_len, self.k_num_heads, self.qk_dim
|
358 |
+
).transpose(1, 2)
|
359 |
+
value_states = value_states.view(
|
360 |
+
bsz, q_len, self.v_num_heads, self.v_dim
|
361 |
+
).transpose(1, 2)
|
362 |
+
|
363 |
+
attn_dtype = query_states.dtype
|
364 |
+
|
365 |
+
query_states = (
|
366 |
+
_rms_norm(query_states, None, 1e-6) * self.q_weight[None, :, None]
|
367 |
+
)
|
368 |
+
key_states = _rms_norm(key_states, None, 1e-6) * self.k_weight[None, :, None]
|
369 |
+
|
370 |
+
if use_cache and past_key_value is None:
|
371 |
+
bsz, nhead_k, _, c_k = key_states.shape
|
372 |
+
_, nhead_v, _, c_v = value_states.shape
|
373 |
+
past_key_value = PlamoAttentionCache(
|
374 |
+
torch.zeros(
|
375 |
+
(bsz, nhead_k, 0, c_k),
|
376 |
+
dtype=key_states.dtype,
|
377 |
+
device=key_states.device,
|
378 |
+
),
|
379 |
+
torch.zeros(
|
380 |
+
(bsz, nhead_v, 0, c_v),
|
381 |
+
dtype=value_states.dtype,
|
382 |
+
device=value_states.device,
|
383 |
+
),
|
384 |
+
)
|
385 |
+
|
386 |
+
kv_seq_len = key_states.shape[-2]
|
387 |
+
if past_key_value is not None:
|
388 |
+
kv_seq_len += past_key_value.sequence_length()
|
389 |
+
|
390 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
391 |
+
assert position_ids is not None
|
392 |
+
query_states = _rotary_pos_emb(query_states, cos, sin, position_ids)
|
393 |
+
key_states = _rotary_pos_emb(key_states, cos, sin, position_ids)
|
394 |
+
# [bsz, nh, t, hd]
|
395 |
+
|
396 |
+
if past_key_value is not None:
|
397 |
+
# reuse k, v, self_attention
|
398 |
+
past_key_value.append_cache(key_states, value_states)
|
399 |
+
key_states = past_key_value.key
|
400 |
+
value_states = past_key_value.value
|
401 |
+
|
402 |
+
def _expand_kv(t: torch.Tensor, repeat: int, target: int) -> torch.Tensor:
|
403 |
+
t = torch.repeat_interleave(t, repeat, dim=1)
|
404 |
+
return t[:, :target]
|
405 |
+
|
406 |
+
# expand shared kv
|
407 |
+
assert self.k_num_heads == self.v_num_heads
|
408 |
+
key_states = _expand_kv(key_states, self.n_group, self.q_num_heads)
|
409 |
+
value_states = _expand_kv(value_states, self.n_group, self.q_num_heads)
|
410 |
+
|
411 |
+
query_states = query_states.to(attn_dtype)
|
412 |
+
key_states = key_states.to(attn_dtype)
|
413 |
+
value_states = value_states.to(attn_dtype)
|
414 |
+
|
415 |
+
if attention_mask is not None and attention_mask.dtype != torch.bool:
|
416 |
+
attention_mask = attention_mask.to(attn_dtype)
|
417 |
+
|
418 |
+
attn_output = F.scaled_dot_product_attention(
|
419 |
+
query_states,
|
420 |
+
key_states,
|
421 |
+
value_states,
|
422 |
+
attn_mask=attention_mask,
|
423 |
+
is_causal=self.is_causal,
|
424 |
+
dropout_p=self.attention_dropout if self.training else 0.0,
|
425 |
+
)
|
426 |
+
attn_output = attn_output.transpose(1, 2)
|
427 |
+
|
428 |
+
attn_output = attn_output.reshape(bsz, q_len, self.q_num_heads * self.v_dim)
|
429 |
+
attn_output = self.o_proj(attn_output)
|
430 |
+
|
431 |
+
if not output_attentions:
|
432 |
+
attn_weights = None
|
433 |
+
|
434 |
+
return attn_output, attn_weights, past_key_value
|
435 |
+
|
436 |
+
|
437 |
+
class DenseMLP(nn.Module):
|
438 |
+
def __init__(self, config: PlamoConfig) -> None:
|
439 |
+
super().__init__()
|
440 |
+
self.config = config
|
441 |
+
self.hidden_size = config.hidden_size
|
442 |
+
self.intermediate_size = config.intermediate_size
|
443 |
+
self.gate_up_proj = torch.nn.Linear(
|
444 |
+
self.hidden_size, self.intermediate_size * 2, bias=False
|
445 |
+
)
|
446 |
+
self.down_proj = torch.nn.Linear(
|
447 |
+
self.intermediate_size, self.hidden_size, bias=False
|
448 |
+
)
|
449 |
+
|
450 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
451 |
+
h = self.gate_up_proj(x)
|
452 |
+
h = _swiglu(h)
|
453 |
+
return self.down_proj(h) # type: ignore
|
454 |
+
|
455 |
+
|
456 |
+
def MLP(config: PlamoConfig, is_sparse: bool) -> torch.nn.Module:
|
457 |
+
return DenseMLP(config)
|
458 |
+
|
459 |
+
|
460 |
+
class PlamoDecoderLayer(torch.nn.Module):
|
461 |
+
def __init__(self, config: PlamoConfig, is_sparse: bool) -> None:
|
462 |
+
super().__init__()
|
463 |
+
self.config = config
|
464 |
+
self.hidden_size = config.hidden_size
|
465 |
+
self.self_attn = Attention(config)
|
466 |
+
self.mlp = MLP(config, is_sparse=is_sparse)
|
467 |
+
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
468 |
+
self.norm2 = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
469 |
+
|
470 |
+
def forward(
|
471 |
+
self,
|
472 |
+
hidden_states: torch.Tensor,
|
473 |
+
attention_mask: Optional[torch.Tensor] = None,
|
474 |
+
position_ids: Optional[torch.LongTensor] = None,
|
475 |
+
past_key_value: Optional[PlamoLayerCache] = None,
|
476 |
+
output_attentions: Optional[bool] = False,
|
477 |
+
use_cache: Optional[bool] = False,
|
478 |
+
) -> Tuple[Any, ...]:
|
479 |
+
# from LlamaDecoder
|
480 |
+
residual = hidden_states
|
481 |
+
hidden_states = self.norm(hidden_states)
|
482 |
+
|
483 |
+
# Self Attention
|
484 |
+
hidden_states_sa, self_attn_weights, present_key_value = self.self_attn(
|
485 |
+
hidden_states=hidden_states,
|
486 |
+
attention_mask=attention_mask,
|
487 |
+
position_ids=position_ids,
|
488 |
+
past_key_value=past_key_value,
|
489 |
+
output_attentions=output_attentions,
|
490 |
+
use_cache=use_cache,
|
491 |
+
)
|
492 |
+
|
493 |
+
hidden_states = residual + hidden_states_sa
|
494 |
+
|
495 |
+
residual = hidden_states
|
496 |
+
hidden_states = self.norm2(hidden_states)
|
497 |
+
|
498 |
+
# Fully Connected
|
499 |
+
hidden_states_mlp = self.mlp(hidden_states)
|
500 |
+
|
501 |
+
# Residual
|
502 |
+
hidden_states = residual + hidden_states_mlp
|
503 |
+
|
504 |
+
outputs: Any = (hidden_states,)
|
505 |
+
|
506 |
+
if output_attentions:
|
507 |
+
outputs += (self_attn_weights,)
|
508 |
+
|
509 |
+
if use_cache:
|
510 |
+
outputs += (present_key_value,)
|
511 |
+
|
512 |
+
return outputs # type: ignore
|
513 |
+
|
514 |
+
|
515 |
+
def is_sparse(config: PlamoConfig, i: int) -> bool:
|
516 |
+
if config.sparse_step is None:
|
517 |
+
return False
|
518 |
+
if config.sparse_step == 1:
|
519 |
+
return True
|
520 |
+
return (i % config.sparse_step) == 1
|
521 |
+
|
522 |
+
|
523 |
+
class PlamoDecoder(torch.nn.Module):
|
524 |
+
def __init__(self, config: PlamoConfig) -> None:
|
525 |
+
super().__init__()
|
526 |
+
|
527 |
+
self.layers = torch.nn.ModuleList(
|
528 |
+
[
|
529 |
+
PlamoDecoderLayer(config, is_sparse=is_sparse(config, i))
|
530 |
+
for i in range(config.num_hidden_layers)
|
531 |
+
]
|
532 |
+
)
|
533 |
+
|
534 |
+
def forward(self, x: DecoderInput) -> DecoderOutput:
|
535 |
+
all_hidden_states: Optional[Tuple[torch.Tensor, ...]] = (
|
536 |
+
() if x.output_hidden_states else None
|
537 |
+
)
|
538 |
+
all_self_attns: Optional[Tuple[torch.Tensor, ...]] = (
|
539 |
+
() if x.output_attentions else None
|
540 |
+
)
|
541 |
+
next_decoder_cache: Optional[PlamoCache] = [] if x.use_cache else None
|
542 |
+
hidden_states = x.hidden_states
|
543 |
+
for idx, decoder_layer in enumerate(self.layers):
|
544 |
+
if x.output_hidden_states:
|
545 |
+
assert all_hidden_states is not None
|
546 |
+
all_hidden_states += (hidden_states,)
|
547 |
+
|
548 |
+
past_key_value = (
|
549 |
+
x.past_key_values[idx] if x.past_key_values is not None else None
|
550 |
+
)
|
551 |
+
|
552 |
+
if self.training and x.gradient_checkpointing:
|
553 |
+
|
554 |
+
def create_custom_forward(module): # type: ignore
|
555 |
+
def custom_forward(*inputs): # type: ignore
|
556 |
+
# None for past_key_value
|
557 |
+
return module(*inputs, x.output_attentions, None)
|
558 |
+
|
559 |
+
return custom_forward
|
560 |
+
|
561 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
562 |
+
create_custom_forward(decoder_layer), # type: ignore
|
563 |
+
hidden_states,
|
564 |
+
x.attention_mask,
|
565 |
+
x.position_ids,
|
566 |
+
None,
|
567 |
+
use_reentrant=False,
|
568 |
+
)
|
569 |
+
else:
|
570 |
+
layer_outputs = decoder_layer(
|
571 |
+
hidden_states,
|
572 |
+
attention_mask=x.attention_mask,
|
573 |
+
position_ids=x.position_ids,
|
574 |
+
past_key_value=past_key_value,
|
575 |
+
output_attentions=x.output_attentions,
|
576 |
+
use_cache=x.use_cache,
|
577 |
+
)
|
578 |
+
|
579 |
+
hidden_states = layer_outputs[0]
|
580 |
+
if x.use_cache:
|
581 |
+
cache = layer_outputs[2 if x.output_attentions else 1]
|
582 |
+
assert cache is not None
|
583 |
+
assert next_decoder_cache is not None
|
584 |
+
next_decoder_cache += (cache,)
|
585 |
+
|
586 |
+
if x.output_attentions:
|
587 |
+
assert layer_outputs[1] is not None
|
588 |
+
assert all_self_attns is not None
|
589 |
+
all_self_attns += (layer_outputs[1],)
|
590 |
+
return DecoderOutput(
|
591 |
+
hidden_states, all_hidden_states, all_self_attns, next_decoder_cache
|
592 |
+
)
|
593 |
+
|
594 |
+
|
595 |
+
class PlamoPreTrainedModel(PreTrainedModel): # type: ignore
|
596 |
+
config_class = PlamoConfig
|
597 |
+
_no_split_modules: List[str]
|
598 |
+
base_model_prefix = "model"
|
599 |
+
supports_gradient_checkpointing = True
|
600 |
+
_supports_sdpa = True
|
601 |
+
_no_split_modules = ["PlamoDecoderLayer"]
|
602 |
+
_skip_keys_device_placement = "past_key_values"
|
603 |
+
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
|
604 |
+
|
605 |
+
def _init_weights(self, module: torch.nn.Module) -> None:
|
606 |
+
std = self.config.initializer_range
|
607 |
+
if isinstance(module, nn.Linear):
|
608 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
609 |
+
if module.bias is not None:
|
610 |
+
module.bias.data.zero_()
|
611 |
+
elif isinstance(module, nn.Embedding):
|
612 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
613 |
+
if module.padding_idx is not None:
|
614 |
+
module.weight.data[module.padding_idx].zero_()
|
615 |
+
|
616 |
+
def _set_gradient_checkpointing(
|
617 |
+
self, module: torch.nn.Module, value: bool = False
|
618 |
+
) -> None:
|
619 |
+
module.gradient_checkpointing = value # type: ignore
|
620 |
+
|
621 |
+
|
622 |
+
class PlamoModel(PlamoPreTrainedModel):
|
623 |
+
def __init__(self, config: PlamoConfig):
|
624 |
+
super().__init__(config)
|
625 |
+
assert config.eval_attention_n_bit is None
|
626 |
+
assert config.eval_mlp_n_bit is None
|
627 |
+
assert not config.eval_offload_moe
|
628 |
+
|
629 |
+
self.padding_idx = config.pad_token_id
|
630 |
+
self.vocab_size = config.vocab_size
|
631 |
+
|
632 |
+
self.embed_tokens = nn.Embedding(
|
633 |
+
config.vocab_size, config.hidden_size, self.padding_idx
|
634 |
+
)
|
635 |
+
self.layers = PlamoDecoder(config) # type: ignore
|
636 |
+
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
637 |
+
|
638 |
+
self.gradient_checkpointing = False
|
639 |
+
# Initialize weights and apply final processing
|
640 |
+
self.post_init()
|
641 |
+
|
642 |
+
def get_input_embeddings(self) -> torch.nn.Embedding:
|
643 |
+
return self.embed_tokens
|
644 |
+
|
645 |
+
def set_input_embeddings(self, value: torch.nn.Embedding) -> None:
|
646 |
+
self.embed_tokens = value
|
647 |
+
|
648 |
+
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
|
649 |
+
def _prepare_decoder_attention_mask(
|
650 |
+
self,
|
651 |
+
attention_mask: torch.Tensor,
|
652 |
+
input_shape: Tuple[int, int],
|
653 |
+
inputs_embeds: Optional[torch.Tensor],
|
654 |
+
past_key_values_length: int,
|
655 |
+
) -> Optional[torch.Tensor]:
|
656 |
+
# create causal mask
|
657 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
658 |
+
combined_attention_mask: Optional[torch.Tensor] = None
|
659 |
+
if input_shape[-1] > 1:
|
660 |
+
assert inputs_embeds is not None
|
661 |
+
combined_attention_mask = _make_causal_mask(
|
662 |
+
input_shape,
|
663 |
+
inputs_embeds.dtype,
|
664 |
+
device=inputs_embeds.device,
|
665 |
+
past_key_values_length=past_key_values_length,
|
666 |
+
)
|
667 |
+
|
668 |
+
if attention_mask is not None:
|
669 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
670 |
+
assert inputs_embeds is not None
|
671 |
+
expanded_attn_mask = _expand_mask(
|
672 |
+
attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
|
673 |
+
).to(inputs_embeds.device)
|
674 |
+
combined_attention_mask = (
|
675 |
+
expanded_attn_mask
|
676 |
+
if combined_attention_mask is None
|
677 |
+
else expanded_attn_mask + combined_attention_mask
|
678 |
+
)
|
679 |
+
|
680 |
+
return combined_attention_mask
|
681 |
+
|
682 |
+
def forward(
|
683 |
+
self,
|
684 |
+
input_ids: Optional[torch.LongTensor] = None,
|
685 |
+
attention_mask: Optional[torch.Tensor] = None,
|
686 |
+
position_ids: Optional[torch.Tensor] = None,
|
687 |
+
past_key_values: Optional[PlamoCache] = None,
|
688 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
689 |
+
use_cache: Optional[bool] = None,
|
690 |
+
output_attentions: Optional[bool] = None,
|
691 |
+
output_hidden_states: Optional[bool] = None,
|
692 |
+
return_dict: Optional[bool] = None,
|
693 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
694 |
+
assert input_ids is not None
|
695 |
+
output_attentions = (
|
696 |
+
output_attentions
|
697 |
+
if output_attentions is not None
|
698 |
+
else self.config.output_attentions
|
699 |
+
)
|
700 |
+
output_hidden_states = (
|
701 |
+
output_hidden_states
|
702 |
+
if output_hidden_states is not None
|
703 |
+
else self.config.output_hidden_states
|
704 |
+
)
|
705 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
706 |
+
|
707 |
+
return_dict = (
|
708 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
709 |
+
)
|
710 |
+
|
711 |
+
# retrieve input_ids and inputs_embeds
|
712 |
+
if input_ids is not None and inputs_embeds is not None:
|
713 |
+
raise ValueError(
|
714 |
+
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time"
|
715 |
+
)
|
716 |
+
elif input_ids is not None:
|
717 |
+
batch_size, seq_length = input_ids.shape
|
718 |
+
else:
|
719 |
+
raise ValueError(
|
720 |
+
"You have to specify either decoder_input_ids or decoder_inputs_embeds"
|
721 |
+
)
|
722 |
+
|
723 |
+
seq_length_with_past = seq_length
|
724 |
+
past_key_values_length = 0
|
725 |
+
|
726 |
+
if past_key_values is not None:
|
727 |
+
past_key_values_length = past_key_values[0].sequence_length()
|
728 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
729 |
+
|
730 |
+
if position_ids is None:
|
731 |
+
device = input_ids.device
|
732 |
+
position_ids = torch.arange(
|
733 |
+
past_key_values_length,
|
734 |
+
seq_length + past_key_values_length,
|
735 |
+
dtype=torch.long,
|
736 |
+
device=device,
|
737 |
+
)
|
738 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
739 |
+
else:
|
740 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
741 |
+
|
742 |
+
if inputs_embeds is None:
|
743 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
744 |
+
# embed positions
|
745 |
+
if (
|
746 |
+
attention_mask is not None
|
747 |
+
or not self.training
|
748 |
+
or past_key_values is not None
|
749 |
+
):
|
750 |
+
if attention_mask is None:
|
751 |
+
attention_mask = torch.ones(
|
752 |
+
(batch_size, seq_length_with_past),
|
753 |
+
dtype=torch.bool,
|
754 |
+
device=inputs_embeds.device,
|
755 |
+
)
|
756 |
+
# attention_mask = self._prepare_decoder_attention_mask(
|
757 |
+
# attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
758 |
+
# )
|
759 |
+
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
760 |
+
attention_mask,
|
761 |
+
(batch_size, seq_length),
|
762 |
+
inputs_embeds,
|
763 |
+
past_key_values_length,
|
764 |
+
)
|
765 |
+
|
766 |
+
hidden_states = inputs_embeds
|
767 |
+
|
768 |
+
if self.gradient_checkpointing and self.training:
|
769 |
+
if use_cache:
|
770 |
+
use_cache = False
|
771 |
+
|
772 |
+
# decoder layers
|
773 |
+
out = self.layers(
|
774 |
+
DecoderInput(
|
775 |
+
hidden_states,
|
776 |
+
position_ids,
|
777 |
+
attention_mask,
|
778 |
+
past_key_values,
|
779 |
+
output_hidden_states,
|
780 |
+
output_attentions,
|
781 |
+
use_cache,
|
782 |
+
self.gradient_checkpointing,
|
783 |
+
)
|
784 |
+
)
|
785 |
+
assert isinstance(out, DecoderOutput)
|
786 |
+
hidden_states = out.hidden_states
|
787 |
+
all_hidden_states = out.all_hidden_states
|
788 |
+
all_self_attns = out.all_self_attns
|
789 |
+
next_decoder_cache = out.next_decoder_cache
|
790 |
+
|
791 |
+
hidden_states = self.norm(hidden_states)
|
792 |
+
|
793 |
+
# add hidden states from the last decoder layer
|
794 |
+
if output_hidden_states:
|
795 |
+
assert all_hidden_states is not None
|
796 |
+
all_hidden_states += (hidden_states,)
|
797 |
+
|
798 |
+
next_cache = next_decoder_cache if use_cache else None
|
799 |
+
if not return_dict:
|
800 |
+
return tuple(
|
801 |
+
v
|
802 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
803 |
+
if v is not None
|
804 |
+
)
|
805 |
+
return BaseModelOutputWithPast(
|
806 |
+
last_hidden_state=hidden_states,
|
807 |
+
past_key_values=next_cache,
|
808 |
+
hidden_states=all_hidden_states,
|
809 |
+
attentions=all_self_attns,
|
810 |
+
)
|
811 |
+
|
812 |
+
|
813 |
+
class ModifiedAttention(Attention):
|
814 |
+
def __init__(self, config: PlamoConfig, **kwargs):
|
815 |
+
super().__init__(config, **kwargs)
|
816 |
+
self.is_causal = False
|
817 |
+
|
818 |
+
|
819 |
+
PLAMO_ATTENTION_CLASSES = {
|
820 |
+
"sdpa": ModifiedAttention,
|
821 |
+
}
|
822 |
+
|
823 |
+
|
824 |
+
class ModifiedPlamoDecoderLayer(PlamoDecoderLayer):
|
825 |
+
def __init__(self, config: PlamoConfig, is_sparse: bool):
|
826 |
+
nn.Module.__init__(self)
|
827 |
+
self.config = config
|
828 |
+
self.hidden_size = config.hidden_size
|
829 |
+
|
830 |
+
self.self_attn = PLAMO_ATTENTION_CLASSES[config._attn_implementation](
|
831 |
+
config=config
|
832 |
+
)
|
833 |
+
|
834 |
+
self.mlp = MLP(config, is_sparse=is_sparse)
|
835 |
+
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
836 |
+
self.norm2 = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
837 |
+
|
838 |
+
|
839 |
+
class ModifiedPlamoDecoder(PlamoDecoder):
|
840 |
+
def __init__(self, config: PlamoConfig) -> None:
|
841 |
+
nn.Module.__init__(self)
|
842 |
+
self.layers = nn.ModuleList(
|
843 |
+
[
|
844 |
+
ModifiedPlamoDecoderLayer(
|
845 |
+
config, is_sparse=is_sparse(config, layer_idx)
|
846 |
+
)
|
847 |
+
for layer_idx in range(config.num_hidden_layers)
|
848 |
+
]
|
849 |
+
)
|
850 |
+
|
851 |
+
|
852 |
+
class PlamoBiModel(PlamoModel):
|
853 |
+
_no_split_modules = ["ModifiedPlamoDecoderLayer"]
|
854 |
+
|
855 |
+
def __init__(self, config: PlamoConfig):
|
856 |
+
PlamoPreTrainedModel.__init__(self, config)
|
857 |
+
self.padding_idx = config.pad_token_id
|
858 |
+
self.vocab_size = config.vocab_size
|
859 |
+
|
860 |
+
self.embed_tokens = nn.Embedding(
|
861 |
+
config.vocab_size, config.hidden_size, self.padding_idx
|
862 |
+
)
|
863 |
+
|
864 |
+
self.layers = ModifiedPlamoDecoder(config)
|
865 |
+
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
866 |
+
self.gradient_checkpointing = False
|
867 |
+
self._attn_implementation = config._attn_implementation
|
868 |
+
self.post_init()
|
869 |
+
|
870 |
+
def forward(
|
871 |
+
self,
|
872 |
+
input_ids: Optional[torch.LongTensor] = None,
|
873 |
+
attention_mask: Optional[torch.Tensor] = None,
|
874 |
+
position_ids: Optional[torch.Tensor] = None,
|
875 |
+
past_key_values: Optional[PlamoCache] = None,
|
876 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
877 |
+
use_cache: Optional[bool] = None,
|
878 |
+
output_attentions: Optional[bool] = None,
|
879 |
+
output_hidden_states: Optional[bool] = None,
|
880 |
+
return_dict: Optional[bool] = None,
|
881 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
882 |
+
assert input_ids is not None
|
883 |
+
output_attentions = (
|
884 |
+
output_attentions
|
885 |
+
if output_attentions is not None
|
886 |
+
else self.config.output_attentions
|
887 |
+
)
|
888 |
+
output_hidden_states = (
|
889 |
+
output_hidden_states
|
890 |
+
if output_hidden_states is not None
|
891 |
+
else self.config.output_hidden_states
|
892 |
+
)
|
893 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
894 |
+
|
895 |
+
return_dict = (
|
896 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
897 |
+
)
|
898 |
+
|
899 |
+
if input_ids is not None and inputs_embeds is not None:
|
900 |
+
raise ValueError(
|
901 |
+
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time"
|
902 |
+
)
|
903 |
+
elif input_ids is not None:
|
904 |
+
batch_size, seq_length = input_ids.shape
|
905 |
+
else:
|
906 |
+
raise ValueError(
|
907 |
+
"You have to specify either decoder_input_ids or decoder_inputs_embeds"
|
908 |
+
)
|
909 |
+
|
910 |
+
seq_length_with_past = seq_length
|
911 |
+
past_key_values_length = 0
|
912 |
+
|
913 |
+
if past_key_values is not None:
|
914 |
+
past_key_values_length = past_key_values[0].sequence_length()
|
915 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
916 |
+
|
917 |
+
if position_ids is None:
|
918 |
+
device = input_ids.device
|
919 |
+
position_ids = torch.arange(
|
920 |
+
past_key_values_length,
|
921 |
+
seq_length + past_key_values_length,
|
922 |
+
dtype=torch.long,
|
923 |
+
device=device,
|
924 |
+
)
|
925 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
926 |
+
else:
|
927 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
928 |
+
|
929 |
+
if inputs_embeds is None:
|
930 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
931 |
+
|
932 |
+
if self._attn_implementation == "sdpa" and not output_attentions:
|
933 |
+
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
934 |
+
attention_mask,
|
935 |
+
(batch_size, seq_length),
|
936 |
+
inputs_embeds,
|
937 |
+
past_key_values_length,
|
938 |
+
)
|
939 |
+
else:
|
940 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
941 |
+
attention_mask,
|
942 |
+
(batch_size, seq_length),
|
943 |
+
inputs_embeds,
|
944 |
+
past_key_values_length,
|
945 |
+
sliding_window=self.config.sliding_window,
|
946 |
+
)
|
947 |
+
hidden_states = inputs_embeds
|
948 |
+
|
949 |
+
if self.gradient_checkpointing and self.training:
|
950 |
+
if use_cache:
|
951 |
+
use_cache = False
|
952 |
+
|
953 |
+
out = self.layers(
|
954 |
+
DecoderInput(
|
955 |
+
hidden_states,
|
956 |
+
position_ids,
|
957 |
+
attention_mask,
|
958 |
+
past_key_values,
|
959 |
+
output_hidden_states,
|
960 |
+
output_attentions,
|
961 |
+
use_cache,
|
962 |
+
self.gradient_checkpointing,
|
963 |
+
)
|
964 |
+
)
|
965 |
+
|
966 |
+
assert isinstance(out, DecoderOutput)
|
967 |
+
hidden_states = out.hidden_states
|
968 |
+
all_hidden_states = out.all_hidden_states
|
969 |
+
all_self_attns = out.all_self_attns
|
970 |
+
next_decoder_cache = out.next_decoder_cache
|
971 |
+
|
972 |
+
hidden_states = self.norm(hidden_states)
|
973 |
+
|
974 |
+
if output_hidden_states:
|
975 |
+
assert all_hidden_states is not None
|
976 |
+
all_hidden_states += (hidden_states,)
|
977 |
+
|
978 |
+
next_cache = next_decoder_cache if use_cache else None
|
979 |
+
if not return_dict:
|
980 |
+
return tuple(
|
981 |
+
v
|
982 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
983 |
+
if v is not None
|
984 |
+
)
|
985 |
+
return BaseModelOutputWithPast(
|
986 |
+
last_hidden_state=hidden_states,
|
987 |
+
past_key_values=next_cache,
|
988 |
+
hidden_states=all_hidden_states,
|
989 |
+
attentions=all_self_attns,
|
990 |
+
)
|
991 |
+
|
992 |
+
def _tokenize(
|
993 |
+
self,
|
994 |
+
texts: List[str],
|
995 |
+
tokenizer: AutoTokenizer,
|
996 |
+
add_special_tokens: bool = True,
|
997 |
+
) -> BatchEncoding:
|
998 |
+
tokenizer.pad_token = tokenizer.eos_token
|
999 |
+
tokenizer.padding_side = "left"
|
1000 |
+
|
1001 |
+
return tokenizer(
|
1002 |
+
texts,
|
1003 |
+
return_tensors="pt",
|
1004 |
+
truncation=True,
|
1005 |
+
padding=True,
|
1006 |
+
max_length=self.config.max_length,
|
1007 |
+
add_special_tokens=add_special_tokens,
|
1008 |
+
)
|
1009 |
+
|
1010 |
+
def _tokenize_with_instruction(
|
1011 |
+
self,
|
1012 |
+
sentences: List[str],
|
1013 |
+
tokenizer: AutoTokenizer,
|
1014 |
+
instruction: str,
|
1015 |
+
add_special_tokens: bool = True,
|
1016 |
+
) -> Tuple[BatchEncoding, torch.Tensor]:
|
1017 |
+
sentence_features = self._tokenize(
|
1018 |
+
sentences, tokenizer, add_special_tokens=False
|
1019 |
+
)
|
1020 |
+
|
1021 |
+
sentences_with_instruction = [instruction + sentence for sentence in sentences]
|
1022 |
+
sentence_features_with_instruction = self._tokenize(
|
1023 |
+
sentences_with_instruction, tokenizer, add_special_tokens
|
1024 |
+
)
|
1025 |
+
|
1026 |
+
embed_mask_list = []
|
1027 |
+
for i in range(len(sentences)):
|
1028 |
+
n_tokens = int(sentence_features["attention_mask"][i].sum().item())
|
1029 |
+
mask = torch.zeros_like(
|
1030 |
+
sentence_features_with_instruction["attention_mask"][i]
|
1031 |
+
)
|
1032 |
+
if n_tokens > 0:
|
1033 |
+
mask[-n_tokens:] = torch.ones(n_tokens, dtype=mask.dtype)
|
1034 |
+
embed_mask_list.append(mask.unsqueeze(0))
|
1035 |
+
embed_mask = torch.cat(embed_mask_list, dim=0)
|
1036 |
+
|
1037 |
+
return sentence_features_with_instruction, embed_mask
|
1038 |
+
|
1039 |
+
def _mean_pooling(
|
1040 |
+
self,
|
1041 |
+
sentence_features: BatchEncoding,
|
1042 |
+
last_hidden_state: torch.Tensor,
|
1043 |
+
embed_mask: Optional[torch.Tensor] = None,
|
1044 |
+
) -> torch.Tensor:
|
1045 |
+
if embed_mask is None:
|
1046 |
+
mask = sentence_features["attention_mask"]
|
1047 |
+
else:
|
1048 |
+
mask = embed_mask
|
1049 |
+
sum_hidden = (
|
1050 |
+
last_hidden_state * mask.unsqueeze(-1).type_as(last_hidden_state)
|
1051 |
+
).sum(dim=1)
|
1052 |
+
lengths = mask.sum(dim=1, keepdim=True).clamp(min=1)
|
1053 |
+
return sum_hidden / lengths
|
1054 |
+
|
1055 |
+
def encode(
|
1056 |
+
self,
|
1057 |
+
sentences: Union[str, List[str]],
|
1058 |
+
tokenizer: AutoTokenizer,
|
1059 |
+
instruction: str,
|
1060 |
+
) -> torch.Tensor:
|
1061 |
+
if isinstance(sentences, str):
|
1062 |
+
sentences = [sentences]
|
1063 |
+
|
1064 |
+
sentence_features, embed_mask = self._tokenize_with_instruction(
|
1065 |
+
sentences,
|
1066 |
+
tokenizer,
|
1067 |
+
instruction=instruction,
|
1068 |
+
)
|
1069 |
+
sentence_features = sentence_features.to(self.device)
|
1070 |
+
embed_mask = embed_mask.to(self.device)
|
1071 |
+
|
1072 |
+
reps = self(**sentence_features)
|
1073 |
+
return self._mean_pooling(sentence_features, reps.last_hidden_state, embed_mask)
|
1074 |
+
|
1075 |
+
def encode_document(
|
1076 |
+
self,
|
1077 |
+
sentences: Union[str, List[str]],
|
1078 |
+
tokenizer: AutoTokenizer,
|
1079 |
+
) -> torch.Tensor:
|
1080 |
+
default_document_instruction = ""
|
1081 |
+
return self.encode(sentences, tokenizer, default_document_instruction)
|
1082 |
+
|
1083 |
+
def encode_query(
|
1084 |
+
self,
|
1085 |
+
sentences: Union[str, List[str]],
|
1086 |
+
tokenizer: AutoTokenizer,
|
1087 |
+
) -> torch.Tensor:
|
1088 |
+
default_query_instruction = "次の文章に対して、関連する文章を検索してください: "
|
1089 |
+
return self.encode(sentences, tokenizer, default_query_instruction)
|
special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|startoftext|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|startoftext|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "<|startoftext|>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<|unknown|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
tokenization_plamo.py
ADDED
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import warnings
|
3 |
+
from shutil import copyfile
|
4 |
+
from typing import Any, Dict, List, Optional, Tuple
|
5 |
+
|
6 |
+
import sentencepiece as spm
|
7 |
+
from transformers.tokenization_utils import PreTrainedTokenizer
|
8 |
+
from transformers.utils import logging
|
9 |
+
|
10 |
+
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
|
11 |
+
logger = logging.get_logger(__name__)
|
12 |
+
|
13 |
+
|
14 |
+
def _get_tokenizer_threads(default: int = -1) -> int:
|
15 |
+
env_names = [
|
16 |
+
"PLAMO_TOKENIZER_NUM_THREADS",
|
17 |
+
"RAYON_NUM_THREADS",
|
18 |
+
]
|
19 |
+
for name in env_names:
|
20 |
+
v = os.environ.get(name, None)
|
21 |
+
if v:
|
22 |
+
try:
|
23 |
+
return int(v)
|
24 |
+
except ValueError:
|
25 |
+
warnings.warn(
|
26 |
+
f"Value assigned to env `{name}` is not an integer. Current value is {v}",
|
27 |
+
category=RuntimeWarning,
|
28 |
+
stacklevel=2,
|
29 |
+
)
|
30 |
+
return default
|
31 |
+
|
32 |
+
|
33 |
+
class PlamoTokenizer(PreTrainedTokenizer): # type: ignore
|
34 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
35 |
+
model_input_names = ["input_ids", "attention_mask"]
|
36 |
+
|
37 |
+
def __init__(
|
38 |
+
self,
|
39 |
+
vocab_file: str,
|
40 |
+
unk_token: str = "<unk>",
|
41 |
+
bos_token: str = "<s>",
|
42 |
+
eos_token: str = "</s>",
|
43 |
+
pad_token: str = "<pad>",
|
44 |
+
cls_token: str = "<cls>",
|
45 |
+
sep_token: str = "<sep>",
|
46 |
+
mask_token: str = "<mask>",
|
47 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
48 |
+
clean_up_tokenization_spaces: bool = False,
|
49 |
+
num_threads: int = -1,
|
50 |
+
**kwargs: Any,
|
51 |
+
) -> None:
|
52 |
+
"""Tokenizer for PLaMo.
|
53 |
+
|
54 |
+
Args:
|
55 |
+
vocab_file (str): Vocabrary file path.
|
56 |
+
unk_token (str): Unknown token.
|
57 |
+
bos_token (str): Beginning of sentence token.
|
58 |
+
eos_token (str): End of sentence token.
|
59 |
+
pad_token (str): Padding token.
|
60 |
+
cls_token (str):
|
61 |
+
Classification token, to extract a summary of an input sequence leveraging self-attention along the
|
62 |
+
full depth of the model.
|
63 |
+
sep_token (str): Separation token, to separate context and query in an input sequence.
|
64 |
+
mask_token (str): Mask token, to use when training a model with masked-language modeling.
|
65 |
+
sp_model_kwargs (Dict[atr, Any] or None): kwargs for sentencepiece model.
|
66 |
+
clean_up_tokenization_spaces (bool): Whether or not to clean up the tokenization spaces.
|
67 |
+
num_threads (int):
|
68 |
+
Number of threads. This value will be ignored if one of `PLAMO_TOKENIZER_NUM_THREADS` or
|
69 |
+
`RAYON_NUM_THREADS` is set as an environment variable.
|
70 |
+
"""
|
71 |
+
if "add_bos_token" not in kwargs:
|
72 |
+
kwargs["add_bos_token"] = False
|
73 |
+
if "add_eos_token" not in kwargs:
|
74 |
+
kwargs["add_eos_token"] = False
|
75 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
76 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
77 |
+
self.sp_model.Init(model_file=vocab_file, num_threads=_get_tokenizer_threads(num_threads))
|
78 |
+
self.vocab_file = vocab_file
|
79 |
+
self.add_bos_token = kwargs["add_bos_token"]
|
80 |
+
self.add_eos_token = kwargs["add_eos_token"]
|
81 |
+
|
82 |
+
super().__init__(
|
83 |
+
vocab_file=vocab_file,
|
84 |
+
unk_token=unk_token,
|
85 |
+
bos_token=bos_token,
|
86 |
+
eos_token=eos_token,
|
87 |
+
pad_token=pad_token,
|
88 |
+
cls_token=cls_token,
|
89 |
+
sep_token=sep_token,
|
90 |
+
mask_token=mask_token,
|
91 |
+
sp_model_kwargs=sp_model_kwargs,
|
92 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
93 |
+
**kwargs,
|
94 |
+
)
|
95 |
+
|
96 |
+
# the functions below are copied from hf transformers LlamaTokenizer's implementation to fix the behaviour of the tokenizer
|
97 |
+
# https://github.com/huggingface/transformers/blob/v4.30.2/src/transformers/models/llama/tokenization_llama.py
|
98 |
+
|
99 |
+
def __getstate__(self) -> dict[str, Any]:
|
100 |
+
state = self.__dict__.copy()
|
101 |
+
state["sp_model"] = None
|
102 |
+
state["sp_model_proto"] = self.sp_model.serialized_model_proto()
|
103 |
+
return state
|
104 |
+
|
105 |
+
def __setstate__(self, d: dict[str, Any]) -> None:
|
106 |
+
self.__dict__ = d
|
107 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
108 |
+
self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
|
109 |
+
|
110 |
+
@property
|
111 |
+
def vocab_size(self) -> Any:
|
112 |
+
"""Returns vocab size"""
|
113 |
+
return self.sp_model.get_piece_size()
|
114 |
+
|
115 |
+
def get_vocab(self) -> dict[str, int]:
|
116 |
+
"""Returns vocab as a dict"""
|
117 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
118 |
+
vocab.update(self.added_tokens_encoder)
|
119 |
+
return vocab
|
120 |
+
|
121 |
+
def convert_tokens_to_string(self, tokens: List[int]) -> str:
|
122 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
123 |
+
current_sub_tokens: List[int] = []
|
124 |
+
out_string = ""
|
125 |
+
prev_is_special = False
|
126 |
+
for i, token in enumerate(tokens):
|
127 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
128 |
+
if token in self.all_special_tokens:
|
129 |
+
if not prev_is_special and i != 0:
|
130 |
+
out_string += " "
|
131 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
132 |
+
prev_is_special = True
|
133 |
+
current_sub_tokens = []
|
134 |
+
else:
|
135 |
+
current_sub_tokens.append(token)
|
136 |
+
prev_is_special = False
|
137 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
138 |
+
return out_string
|
139 |
+
|
140 |
+
def _tokenize(self, text: str) -> Any:
|
141 |
+
"""Returns a tokenized string."""
|
142 |
+
return self.sp_model.encode(text, out_type=str)
|
143 |
+
|
144 |
+
def _convert_token_to_id(self, token: str) -> Any:
|
145 |
+
"""Converts a token (str) in an id using the vocab."""
|
146 |
+
return self.sp_model.piece_to_id(token)
|
147 |
+
|
148 |
+
def _convert_id_to_token(self, index: int) -> Any:
|
149 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
150 |
+
token = self.sp_model.IdToPiece(index)
|
151 |
+
return token
|
152 |
+
|
153 |
+
def build_inputs_with_special_tokens(
|
154 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
155 |
+
) -> List[int]:
|
156 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
157 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
158 |
+
|
159 |
+
output = bos_token_id + token_ids_0 + eos_token_id
|
160 |
+
|
161 |
+
if token_ids_1 is not None:
|
162 |
+
output = output + bos_token_id + token_ids_1 + eos_token_id
|
163 |
+
|
164 |
+
return output
|
165 |
+
|
166 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
167 |
+
"""
|
168 |
+
Save the vocabulary and special tokens file to a directory.
|
169 |
+
|
170 |
+
Args:
|
171 |
+
save_directory (`str`):
|
172 |
+
The directory in which to save the vocabulary.
|
173 |
+
|
174 |
+
Returns:
|
175 |
+
`Tuple(str)`: Paths to the files saved.
|
176 |
+
"""
|
177 |
+
if not os.path.isdir(save_directory):
|
178 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
179 |
+
return ("",)
|
180 |
+
out_vocab_file = os.path.join(
|
181 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
182 |
+
)
|
183 |
+
|
184 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
185 |
+
copyfile(self.vocab_file, out_vocab_file)
|
186 |
+
elif not os.path.isfile(self.vocab_file):
|
187 |
+
with open(out_vocab_file, "wb") as fi:
|
188 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
189 |
+
fi.write(content_spiece_model)
|
190 |
+
|
191 |
+
return (out_vocab_file,)
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9603895be773fe5807f5183bf9279da4df3a81ce5941a1a9521e8b496201c69a
|
3 |
+
size 805457
|
tokenizer_config.json
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<|unknown|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<|startoftext|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "<|endoftext|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"3": {
|
30 |
+
"content": "<|pad|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
}
|
37 |
+
},
|
38 |
+
"auto_map": {
|
39 |
+
"AutoTokenizer": [
|
40 |
+
"tokenization_plamo.PlamoTokenizer",
|
41 |
+
null
|
42 |
+
]
|
43 |
+
},
|
44 |
+
"bos_token": "<|startoftext|>",
|
45 |
+
"clean_up_tokenization_spaces": false,
|
46 |
+
"cls_token": null,
|
47 |
+
"eos_token": "<|startoftext|>",
|
48 |
+
"extra_special_tokens": {},
|
49 |
+
"local_file_only": true,
|
50 |
+
"mask_token": null,
|
51 |
+
"model_max_length": 1000000000000000019884624838656,
|
52 |
+
"pad_token": "<|startoftext|>",
|
53 |
+
"sep_token": null,
|
54 |
+
"sp_model_kwargs": {},
|
55 |
+
"tokenizer_class": "PlamoTokenizer",
|
56 |
+
"unk_token": "<|unknown|>"
|
57 |
+
}
|