--- library_name: transformers license: apache-2.0 base_model: d4data/biomedical-ner-all tags: - generated_from_trainer metrics: - accuracy model-index: - name: ner-biomedical-maccrobat2018 results: [] --- # ner-biomedical-maccrobat2018 This model is a fine-tuned version of [d4data/biomedical-ner-all](https://huggingface.co/d4data/biomedical-ner-all) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6384 - Accuracy: 0.8007 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7438 | 1.0 | 10 | 1.8410 | 0.2970 | | 1.4729 | 2.0 | 20 | 1.0655 | 0.5852 | | 0.9161 | 3.0 | 30 | 0.7775 | 0.7075 | | 0.6509 | 4.0 | 40 | 0.6808 | 0.7477 | | 0.4923 | 5.0 | 50 | 0.6315 | 0.7603 | | 0.3818 | 6.0 | 60 | 0.6120 | 0.7756 | | 0.3096 | 7.0 | 70 | 0.6025 | 0.7742 | | 0.2546 | 8.0 | 80 | 0.5992 | 0.7861 | | 0.2089 | 9.0 | 90 | 0.6075 | 0.7883 | | 0.178 | 10.0 | 100 | 0.6149 | 0.7877 | | 0.159 | 11.0 | 110 | 0.6219 | 0.8012 | | 0.139 | 12.0 | 120 | 0.6282 | 0.7997 | | 0.1239 | 13.0 | 130 | 0.6222 | 0.7970 | | 0.1115 | 14.0 | 140 | 0.6311 | 0.7915 | | 0.1015 | 15.0 | 150 | 0.6336 | 0.7976 | | 0.0958 | 16.0 | 160 | 0.6321 | 0.7955 | | 0.0898 | 17.0 | 170 | 0.6352 | 0.7990 | | 0.0874 | 18.0 | 180 | 0.6464 | 0.7981 | | 0.0841 | 19.0 | 190 | 0.6380 | 0.7992 | | 0.0819 | 20.0 | 200 | 0.6384 | 0.8007 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0