File size: 6,063 Bytes
968f5a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
---
library_name: peft
license: apache-2.0
base_model: Qwen/QwQ-32B-Preview
tags:
- generated_from_trainer
datasets:
- phxdev/creed
model-index:
- name: outputs/heisenberg-crystal
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.8.0.dev0`
```yaml
adapter: lora
base_model: Qwen/QwQ-32B-Preview
trust_remote_code: true
bf16: true
dataset_processes: 64
datasets:
- path: phxdev/creed
  type: completion
  field: text
  trust_remote_code: false
  streaming: true
gradient_accumulation_steps: 1
gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
learning_rate: 0.001
lisa_layers_attribute: model.layers
lisa_enabled: true
lisa_layers_fraction: 0.25
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: true
lora_alpha: 128
lora_dropout: 0.15
lora_r: 64
lora_target_modules:
- q_proj
- v_proj
- k_proj
- o_proj
- gate_proj
- down_proj
- up_proj
lora_fan_in_fan_out: false
modules_to_save:
- embed_tokens
- lm_head
loraplus_lr_embedding: 1.0e-06
loraplus_lr_ratio: 16
lr_scheduler: cosine_with_min_lr
lr_scheduler_kwargs:
  min_lr: 0.00001
max_prompt_len: 1024
mean_resizing_embeddings: false
micro_batch_size: 1
num_epochs: 3.0
optimizer: adamw_torch
# optim_args:
#   weight_decay: 0.05
#   betas: [0.9, 0.95]
#   eps: 1.0e-8
output_dir: ./outputs/heisenberg-crystal
pretrain_multipack_attn: true
pretrain_multipack_buffer_size: 20000
qlora_sharded_model_loading: false
ray_num_workers: 1
resources_per_worker:
  GPU: 1
resume_from_checkpoint: null
sample_packing: false
sample_packing_bin_size: 200
sample_packing_group_size: 100000
sample_packing_seq_len_multiplier: 1.0
save_only_model: true
save_safetensors: true
save_strategy: steps
save_steps: 100
save_total_limit: 3
eval_strategy: steps
eval_steps: 100
metric_for_best_model: loss
greater_is_better: false
sequence_len: 512
shuffle_merged_datasets: true
skip_prepare_dataset: false
strict: false
train_on_inputs: false
neftune_noise_alpha: 5.0
model_config:
  rope_scaling:
    type: linear
    factor: 1.5
dataloader_prefetch_factor: 4
dataloader_num_workers: 8
dataloader_pin_memory: true
dataloader_persistent_workers: true
max_grad_norm: 1.0
adam_beta2_schedule: cosine
torch_compile: true
torch_compile_backend: inductor
trl:
  log_completions: true
  ref_model_mixup_alpha: 0.9
  ref_model_sync_steps: 64
  sync_ref_model: false
  use_vllm: false
  vllm_device: auto
  vllm_dtype: auto
  vllm_gpu_memory_utilization: 0.9
use_ray: false
val_set_size: 0.05
warmup_steps: 100
warmup_ratio: 0.0
weight_decay: 0.05
flash_attention: true
flash_attn_cross_entropy: true
flash_attn_rms_norm: true
flash_attn_fuse_qkv: false
flash_attn_fuse_mlp: false
ddp_backend: nccl
ddp_broadcast_buffers: false
ddp_find_unused_parameters: false
tf32: true
bf16_full_eval: false
fp16: false
# unfrozen_parameters:
# - lm_head.*
# - embed_tokens.*
# - norm.*
xformers_attention: false
s2_attention: false
sdp_attention: false
pad_to_sequence_len: true
peft_use_dora: false
peft_lora_modules_to_save: null
special_tokens:
  pad_token: <|endoftext|>
deepspeed: null
fsdp: null
fsdp_config: null
# wandb_project: heisenberg-qwen
# wandb_entity: null
# wandb_name: blue-crystal-run
# wandb_log_model: checkpoint
hub_model_id: null
hub_strategy: null
report_to: []
logging_strategy: steps
logging_steps: 10
logging_first_step: true
```

</details><br>

# outputs/heisenberg-crystal

This model is a fine-tuned version of [Qwen/QwQ-32B-Preview](https://huggingface.co/Qwen/QwQ-32B-Preview) on the phxdev/creed dataset.
It achieves the following results on the evaluation set:
- Loss: nan

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine_with_min_lr
- lr_scheduler_warmup_steps: 100
- num_epochs: 3.0

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log        | 0.0013 | 1    | nan             |
| 7.8286        | 0.1259 | 100  | nan             |
| 7.2486        | 0.2519 | 200  | nan             |
| 7.2601        | 0.3778 | 300  | nan             |
| 8.2142        | 0.5038 | 400  | nan             |
| 7.1902        | 0.6297 | 500  | nan             |
| 6.3799        | 0.7557 | 600  | nan             |
| 6.7115        | 0.8816 | 700  | nan             |
| 6.0414        | 1.0076 | 800  | nan             |
| 6.428         | 1.1335 | 900  | nan             |
| 6.3167        | 1.2594 | 1000 | nan             |
| 6.0359        | 1.3854 | 1100 | nan             |
| 6.3701        | 1.5113 | 1200 | nan             |
| 6.9225        | 1.6373 | 1300 | nan             |
| 6.5807        | 1.7632 | 1400 | nan             |
| 6.8649        | 1.8892 | 1500 | nan             |
| 6.1397        | 2.0151 | 1600 | nan             |
| 5.7675        | 2.1411 | 1700 | nan             |
| 6.2605        | 2.2670 | 1800 | nan             |
| 5.8788        | 2.3929 | 1900 | nan             |
| 6.0279        | 2.5189 | 2000 | nan             |
| 6.3911        | 2.6448 | 2100 | nan             |
| 6.0412        | 2.7708 | 2200 | nan             |
| 6.0862        | 2.8967 | 2300 | nan             |


### Framework versions

- PEFT 0.14.0
- Transformers 4.49.0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0