File size: 6,063 Bytes
968f5a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
---
library_name: peft
license: apache-2.0
base_model: Qwen/QwQ-32B-Preview
tags:
- generated_from_trainer
datasets:
- phxdev/creed
model-index:
- name: outputs/heisenberg-crystal
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.8.0.dev0`
```yaml
adapter: lora
base_model: Qwen/QwQ-32B-Preview
trust_remote_code: true
bf16: true
dataset_processes: 64
datasets:
- path: phxdev/creed
type: completion
field: text
trust_remote_code: false
streaming: true
gradient_accumulation_steps: 1
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
learning_rate: 0.001
lisa_layers_attribute: model.layers
lisa_enabled: true
lisa_layers_fraction: 0.25
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: true
lora_alpha: 128
lora_dropout: 0.15
lora_r: 64
lora_target_modules:
- q_proj
- v_proj
- k_proj
- o_proj
- gate_proj
- down_proj
- up_proj
lora_fan_in_fan_out: false
modules_to_save:
- embed_tokens
- lm_head
loraplus_lr_embedding: 1.0e-06
loraplus_lr_ratio: 16
lr_scheduler: cosine_with_min_lr
lr_scheduler_kwargs:
min_lr: 0.00001
max_prompt_len: 1024
mean_resizing_embeddings: false
micro_batch_size: 1
num_epochs: 3.0
optimizer: adamw_torch
# optim_args:
# weight_decay: 0.05
# betas: [0.9, 0.95]
# eps: 1.0e-8
output_dir: ./outputs/heisenberg-crystal
pretrain_multipack_attn: true
pretrain_multipack_buffer_size: 20000
qlora_sharded_model_loading: false
ray_num_workers: 1
resources_per_worker:
GPU: 1
resume_from_checkpoint: null
sample_packing: false
sample_packing_bin_size: 200
sample_packing_group_size: 100000
sample_packing_seq_len_multiplier: 1.0
save_only_model: true
save_safetensors: true
save_strategy: steps
save_steps: 100
save_total_limit: 3
eval_strategy: steps
eval_steps: 100
metric_for_best_model: loss
greater_is_better: false
sequence_len: 512
shuffle_merged_datasets: true
skip_prepare_dataset: false
strict: false
train_on_inputs: false
neftune_noise_alpha: 5.0
model_config:
rope_scaling:
type: linear
factor: 1.5
dataloader_prefetch_factor: 4
dataloader_num_workers: 8
dataloader_pin_memory: true
dataloader_persistent_workers: true
max_grad_norm: 1.0
adam_beta2_schedule: cosine
torch_compile: true
torch_compile_backend: inductor
trl:
log_completions: true
ref_model_mixup_alpha: 0.9
ref_model_sync_steps: 64
sync_ref_model: false
use_vllm: false
vllm_device: auto
vllm_dtype: auto
vllm_gpu_memory_utilization: 0.9
use_ray: false
val_set_size: 0.05
warmup_steps: 100
warmup_ratio: 0.0
weight_decay: 0.05
flash_attention: true
flash_attn_cross_entropy: true
flash_attn_rms_norm: true
flash_attn_fuse_qkv: false
flash_attn_fuse_mlp: false
ddp_backend: nccl
ddp_broadcast_buffers: false
ddp_find_unused_parameters: false
tf32: true
bf16_full_eval: false
fp16: false
# unfrozen_parameters:
# - lm_head.*
# - embed_tokens.*
# - norm.*
xformers_attention: false
s2_attention: false
sdp_attention: false
pad_to_sequence_len: true
peft_use_dora: false
peft_lora_modules_to_save: null
special_tokens:
pad_token: <|endoftext|>
deepspeed: null
fsdp: null
fsdp_config: null
# wandb_project: heisenberg-qwen
# wandb_entity: null
# wandb_name: blue-crystal-run
# wandb_log_model: checkpoint
hub_model_id: null
hub_strategy: null
report_to: []
logging_strategy: steps
logging_steps: 10
logging_first_step: true
```
</details><br>
# outputs/heisenberg-crystal
This model is a fine-tuned version of [Qwen/QwQ-32B-Preview](https://huggingface.co/Qwen/QwQ-32B-Preview) on the phxdev/creed dataset.
It achieves the following results on the evaluation set:
- Loss: nan
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine_with_min_lr
- lr_scheduler_warmup_steps: 100
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0013 | 1 | nan |
| 7.8286 | 0.1259 | 100 | nan |
| 7.2486 | 0.2519 | 200 | nan |
| 7.2601 | 0.3778 | 300 | nan |
| 8.2142 | 0.5038 | 400 | nan |
| 7.1902 | 0.6297 | 500 | nan |
| 6.3799 | 0.7557 | 600 | nan |
| 6.7115 | 0.8816 | 700 | nan |
| 6.0414 | 1.0076 | 800 | nan |
| 6.428 | 1.1335 | 900 | nan |
| 6.3167 | 1.2594 | 1000 | nan |
| 6.0359 | 1.3854 | 1100 | nan |
| 6.3701 | 1.5113 | 1200 | nan |
| 6.9225 | 1.6373 | 1300 | nan |
| 6.5807 | 1.7632 | 1400 | nan |
| 6.8649 | 1.8892 | 1500 | nan |
| 6.1397 | 2.0151 | 1600 | nan |
| 5.7675 | 2.1411 | 1700 | nan |
| 6.2605 | 2.2670 | 1800 | nan |
| 5.8788 | 2.3929 | 1900 | nan |
| 6.0279 | 2.5189 | 2000 | nan |
| 6.3911 | 2.6448 | 2100 | nan |
| 6.0412 | 2.7708 | 2200 | nan |
| 6.0862 | 2.8967 | 2300 | nan |
### Framework versions
- PEFT 0.14.0
- Transformers 4.49.0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0 |