pihull commited on
Commit
c16ade5
·
verified ·
1 Parent(s): 516a1d8

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
chat_template.jinja ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- if messages[0]['role'] == 'system' %}
2
+ {%- set system_message = messages[0]['content'] %}
3
+ {%- set loop_messages = messages[1:] %}
4
+ {%- else %}
5
+ {%- set loop_messages = messages %}
6
+ {%- endif %}
7
+
8
+ {{- bos_token }}
9
+ {%- for message in loop_messages %}
10
+ {%- if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}
11
+ {{- raise_exception('After the optional system message, conversation roles must alternate user/assistant/user/assistant/...') }}
12
+ {%- endif %}
13
+ {%- if message['role'] == 'user' %}
14
+ {%- if loop.first and system_message is defined %}
15
+ {{- '[INST]' + system_message + '\n\n' + message['content'] + '[/INST]' }}
16
+ {%- else %}
17
+ {{- '[INST]' + message['content'] + '[/INST]' }}
18
+ {%- endif %}
19
+ {%- elif message['role'] == 'assistant' %}
20
+ {{- message['content'] + eos_token}}
21
+ {%- else %}
22
+ {{- raise_exception('Only user and assistant roles are supported, with the exception of an initial optional system message!') }}
23
+ {%- endif %}
24
+ {%- endfor %}
25
+ {% if add_generation_prompt %}{{'<think>\n'}}{% endif %}
config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "LlamaForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 128000,
8
+ "dtype": "bfloat16",
9
+ "eos_token_id": 128001,
10
+ "head_dim": 128,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 4096,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 14336,
15
+ "max_position_embeddings": 131072,
16
+ "mlp_bias": false,
17
+ "model_type": "llama",
18
+ "num_attention_heads": 32,
19
+ "num_hidden_layers": 32,
20
+ "num_key_value_heads": 8,
21
+ "pad_token_id": 128004,
22
+ "pretraining_tp": 1,
23
+ "rms_norm_eps": 1e-05,
24
+ "rope_scaling": {
25
+ "factor": 8.0,
26
+ "high_freq_factor": 4.0,
27
+ "low_freq_factor": 1.0,
28
+ "original_max_position_embeddings": 8192,
29
+ "rope_type": "llama3"
30
+ },
31
+ "rope_theta": 500000.0,
32
+ "tie_word_embeddings": false,
33
+ "transformers_version": "4.57.0",
34
+ "use_cache": false,
35
+ "vocab_size": 128260
36
+ }
generation_config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 128000,
4
+ "do_sample": true,
5
+ "eos_token_id": [
6
+ 128001
7
+ ],
8
+ "pad_token_id": 128004,
9
+ "temperature": 0.6,
10
+ "top_p": 0.9,
11
+ "transformers_version": "4.57.0"
12
+ }
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step330
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:061db5e0a0e10ae2bec12c2dab28adf9c96aa15ccd7fe618b88210773833cf54
3
+ size 4976731440
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:11234c839b0dbc8decde642f49c6329310c53e7e73ac6eeb26668892dbae529e
3
+ size 4999802720
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8f98e4f1d5c7f877f4e9139209ca90c12479935072e510719939258438f29e94
3
+ size 4915916176
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b2de294f715d6b147668b4506f668ad949c2d1b551101a182b325d3471ab2b5
3
+ size 1168171576
model.safetensors.index.json ADDED
@@ -0,0 +1,299 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_parameters": 8030294016,
4
+ "total_size": 16060588032
5
+ },
6
+ "weight_map": {
7
+ "lm_head.weight": "model-00004-of-00004.safetensors",
8
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
19
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
28
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
29
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
30
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
31
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
32
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
38
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
41
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
43
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
50
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
53
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
55
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
62
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
65
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
67
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
74
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
77
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
79
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
86
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
89
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
91
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
98
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
101
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
103
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
110
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
113
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
115
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
117
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
118
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
119
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
120
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
121
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
122
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
123
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
124
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
125
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
126
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
127
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
128
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
129
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
131
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
133
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
134
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
135
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
136
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
137
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
138
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
139
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
140
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
146
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
149
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
151
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
153
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
154
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
155
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
156
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
157
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
158
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
159
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
160
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
161
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
162
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
163
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
164
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
170
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
173
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
175
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
182
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
185
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
187
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
194
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
197
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
199
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
206
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
209
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
211
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
217
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
218
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
219
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
220
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
221
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
222
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
223
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
224
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
225
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
230
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
233
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.31.input_layernorm.weight": "model-00004-of-00004.safetensors",
235
+ "model.layers.31.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
236
+ "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
238
+ "model.layers.31.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
239
+ "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
242
+ "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
244
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
245
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
246
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
247
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
248
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
249
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
250
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
251
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
252
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
253
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
254
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
255
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
256
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
257
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
258
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
259
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
260
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
266
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
269
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
271
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
278
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
281
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
283
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
285
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
288
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
289
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
290
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
291
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
292
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
293
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
294
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
295
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
296
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
297
+ "model.norm.weight": "model-00004-of-00004.safetensors"
298
+ }
299
+ }
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e1e4855c6fbb5448a579632415374ad88a5f5d99b68c7d088bfbdb6ed197282
3
+ size 1465
special_tokens_map.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<think>",
4
+ "</think>"
5
+ ],
6
+ "bos_token": {
7
+ "content": "<|begin_of_text|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "eos_token": {
14
+ "content": "<|end_of_text|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ },
20
+ "pad_token": {
21
+ "content": "<|finetune_right_pad_id|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false
26
+ }
27
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0fb1adf57e10ffa5f9daa88d22d663cfd9790542f639c7746c890f65af27542a
3
+ size 17210656
tokenizer_config.json ADDED
@@ -0,0 +1,2099 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "128000": {
4
+ "content": "<|begin_of_text|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "128001": {
12
+ "content": "<|end_of_text|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "128002": {
20
+ "content": "<|reserved_special_token_0|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "128003": {
28
+ "content": "<|reserved_special_token_1|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128004": {
36
+ "content": "<|finetune_right_pad_id|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "128005": {
44
+ "content": "<|reserved_special_token_2|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "128006": {
52
+ "content": "<|start_header_id|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "128007": {
60
+ "content": "<|end_header_id|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "128008": {
68
+ "content": "<|eom_id|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "128009": {
76
+ "content": "<|eot_id|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "128010": {
84
+ "content": "<|python_tag|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "128011": {
92
+ "content": "<|reserved_special_token_3|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "128012": {
100
+ "content": "<|reserved_special_token_4|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "128013": {
108
+ "content": "<|reserved_special_token_5|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "128014": {
116
+ "content": "<|reserved_special_token_6|>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "128015": {
124
+ "content": "<|reserved_special_token_7|>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "128016": {
132
+ "content": "<|reserved_special_token_8|>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "128017": {
140
+ "content": "<|reserved_special_token_9|>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "128018": {
148
+ "content": "<|reserved_special_token_10|>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "128019": {
156
+ "content": "<|reserved_special_token_11|>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "128020": {
164
+ "content": "<|reserved_special_token_12|>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ },
171
+ "128021": {
172
+ "content": "<|reserved_special_token_13|>",
173
+ "lstrip": false,
174
+ "normalized": false,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": true
178
+ },
179
+ "128022": {
180
+ "content": "<|reserved_special_token_14|>",
181
+ "lstrip": false,
182
+ "normalized": false,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": true
186
+ },
187
+ "128023": {
188
+ "content": "<|reserved_special_token_15|>",
189
+ "lstrip": false,
190
+ "normalized": false,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": true
194
+ },
195
+ "128024": {
196
+ "content": "<|reserved_special_token_16|>",
197
+ "lstrip": false,
198
+ "normalized": false,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": true
202
+ },
203
+ "128025": {
204
+ "content": "<|reserved_special_token_17|>",
205
+ "lstrip": false,
206
+ "normalized": false,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": true
210
+ },
211
+ "128026": {
212
+ "content": "<|reserved_special_token_18|>",
213
+ "lstrip": false,
214
+ "normalized": false,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": true
218
+ },
219
+ "128027": {
220
+ "content": "<|reserved_special_token_19|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "128028": {
228
+ "content": "<|reserved_special_token_20|>",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "128029": {
236
+ "content": "<|reserved_special_token_21|>",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "128030": {
244
+ "content": "<|reserved_special_token_22|>",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "128031": {
252
+ "content": "<|reserved_special_token_23|>",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "128032": {
260
+ "content": "<|reserved_special_token_24|>",
261
+ "lstrip": false,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "128033": {
268
+ "content": "<|reserved_special_token_25|>",
269
+ "lstrip": false,
270
+ "normalized": false,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": true
274
+ },
275
+ "128034": {
276
+ "content": "<|reserved_special_token_26|>",
277
+ "lstrip": false,
278
+ "normalized": false,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": true
282
+ },
283
+ "128035": {
284
+ "content": "<|reserved_special_token_27|>",
285
+ "lstrip": false,
286
+ "normalized": false,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": true
290
+ },
291
+ "128036": {
292
+ "content": "<|reserved_special_token_28|>",
293
+ "lstrip": false,
294
+ "normalized": false,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": true
298
+ },
299
+ "128037": {
300
+ "content": "<|reserved_special_token_29|>",
301
+ "lstrip": false,
302
+ "normalized": false,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": true
306
+ },
307
+ "128038": {
308
+ "content": "<|reserved_special_token_30|>",
309
+ "lstrip": false,
310
+ "normalized": false,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": true
314
+ },
315
+ "128039": {
316
+ "content": "<|reserved_special_token_31|>",
317
+ "lstrip": false,
318
+ "normalized": false,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": true
322
+ },
323
+ "128040": {
324
+ "content": "<|reserved_special_token_32|>",
325
+ "lstrip": false,
326
+ "normalized": false,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": true
330
+ },
331
+ "128041": {
332
+ "content": "<|reserved_special_token_33|>",
333
+ "lstrip": false,
334
+ "normalized": false,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": true
338
+ },
339
+ "128042": {
340
+ "content": "<|reserved_special_token_34|>",
341
+ "lstrip": false,
342
+ "normalized": false,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": true
346
+ },
347
+ "128043": {
348
+ "content": "<|reserved_special_token_35|>",
349
+ "lstrip": false,
350
+ "normalized": false,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": true
354
+ },
355
+ "128044": {
356
+ "content": "<|reserved_special_token_36|>",
357
+ "lstrip": false,
358
+ "normalized": false,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": true
362
+ },
363
+ "128045": {
364
+ "content": "<|reserved_special_token_37|>",
365
+ "lstrip": false,
366
+ "normalized": false,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": true
370
+ },
371
+ "128046": {
372
+ "content": "<|reserved_special_token_38|>",
373
+ "lstrip": false,
374
+ "normalized": false,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": true
378
+ },
379
+ "128047": {
380
+ "content": "<|reserved_special_token_39|>",
381
+ "lstrip": false,
382
+ "normalized": false,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": true
386
+ },
387
+ "128048": {
388
+ "content": "<|reserved_special_token_40|>",
389
+ "lstrip": false,
390
+ "normalized": false,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": true
394
+ },
395
+ "128049": {
396
+ "content": "<|reserved_special_token_41|>",
397
+ "lstrip": false,
398
+ "normalized": false,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": true
402
+ },
403
+ "128050": {
404
+ "content": "<|reserved_special_token_42|>",
405
+ "lstrip": false,
406
+ "normalized": false,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": true
410
+ },
411
+ "128051": {
412
+ "content": "<|reserved_special_token_43|>",
413
+ "lstrip": false,
414
+ "normalized": false,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": true
418
+ },
419
+ "128052": {
420
+ "content": "<|reserved_special_token_44|>",
421
+ "lstrip": false,
422
+ "normalized": false,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": true
426
+ },
427
+ "128053": {
428
+ "content": "<|reserved_special_token_45|>",
429
+ "lstrip": false,
430
+ "normalized": false,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": true
434
+ },
435
+ "128054": {
436
+ "content": "<|reserved_special_token_46|>",
437
+ "lstrip": false,
438
+ "normalized": false,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": true
442
+ },
443
+ "128055": {
444
+ "content": "<|reserved_special_token_47|>",
445
+ "lstrip": false,
446
+ "normalized": false,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": true
450
+ },
451
+ "128056": {
452
+ "content": "<|reserved_special_token_48|>",
453
+ "lstrip": false,
454
+ "normalized": false,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": true
458
+ },
459
+ "128057": {
460
+ "content": "<|reserved_special_token_49|>",
461
+ "lstrip": false,
462
+ "normalized": false,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": true
466
+ },
467
+ "128058": {
468
+ "content": "<|reserved_special_token_50|>",
469
+ "lstrip": false,
470
+ "normalized": false,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": true
474
+ },
475
+ "128059": {
476
+ "content": "<|reserved_special_token_51|>",
477
+ "lstrip": false,
478
+ "normalized": false,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": true
482
+ },
483
+ "128060": {
484
+ "content": "<|reserved_special_token_52|>",
485
+ "lstrip": false,
486
+ "normalized": false,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": true
490
+ },
491
+ "128061": {
492
+ "content": "<|reserved_special_token_53|>",
493
+ "lstrip": false,
494
+ "normalized": false,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": true
498
+ },
499
+ "128062": {
500
+ "content": "<|reserved_special_token_54|>",
501
+ "lstrip": false,
502
+ "normalized": false,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": true
506
+ },
507
+ "128063": {
508
+ "content": "<|reserved_special_token_55|>",
509
+ "lstrip": false,
510
+ "normalized": false,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": true
514
+ },
515
+ "128064": {
516
+ "content": "<|reserved_special_token_56|>",
517
+ "lstrip": false,
518
+ "normalized": false,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": true
522
+ },
523
+ "128065": {
524
+ "content": "<|reserved_special_token_57|>",
525
+ "lstrip": false,
526
+ "normalized": false,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": true
530
+ },
531
+ "128066": {
532
+ "content": "<|reserved_special_token_58|>",
533
+ "lstrip": false,
534
+ "normalized": false,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": true
538
+ },
539
+ "128067": {
540
+ "content": "<|reserved_special_token_59|>",
541
+ "lstrip": false,
542
+ "normalized": false,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": true
546
+ },
547
+ "128068": {
548
+ "content": "<|reserved_special_token_60|>",
549
+ "lstrip": false,
550
+ "normalized": false,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": true
554
+ },
555
+ "128069": {
556
+ "content": "<|reserved_special_token_61|>",
557
+ "lstrip": false,
558
+ "normalized": false,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": true
562
+ },
563
+ "128070": {
564
+ "content": "<|reserved_special_token_62|>",
565
+ "lstrip": false,
566
+ "normalized": false,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": true
570
+ },
571
+ "128071": {
572
+ "content": "<|reserved_special_token_63|>",
573
+ "lstrip": false,
574
+ "normalized": false,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": true
578
+ },
579
+ "128072": {
580
+ "content": "<|reserved_special_token_64|>",
581
+ "lstrip": false,
582
+ "normalized": false,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": true
586
+ },
587
+ "128073": {
588
+ "content": "<|reserved_special_token_65|>",
589
+ "lstrip": false,
590
+ "normalized": false,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": true
594
+ },
595
+ "128074": {
596
+ "content": "<|reserved_special_token_66|>",
597
+ "lstrip": false,
598
+ "normalized": false,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": true
602
+ },
603
+ "128075": {
604
+ "content": "<|reserved_special_token_67|>",
605
+ "lstrip": false,
606
+ "normalized": false,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": true
610
+ },
611
+ "128076": {
612
+ "content": "<|reserved_special_token_68|>",
613
+ "lstrip": false,
614
+ "normalized": false,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": true
618
+ },
619
+ "128077": {
620
+ "content": "<|reserved_special_token_69|>",
621
+ "lstrip": false,
622
+ "normalized": false,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": true
626
+ },
627
+ "128078": {
628
+ "content": "<|reserved_special_token_70|>",
629
+ "lstrip": false,
630
+ "normalized": false,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": true
634
+ },
635
+ "128079": {
636
+ "content": "<|reserved_special_token_71|>",
637
+ "lstrip": false,
638
+ "normalized": false,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": true
642
+ },
643
+ "128080": {
644
+ "content": "<|reserved_special_token_72|>",
645
+ "lstrip": false,
646
+ "normalized": false,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": true
650
+ },
651
+ "128081": {
652
+ "content": "<|reserved_special_token_73|>",
653
+ "lstrip": false,
654
+ "normalized": false,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": true
658
+ },
659
+ "128082": {
660
+ "content": "<|reserved_special_token_74|>",
661
+ "lstrip": false,
662
+ "normalized": false,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": true
666
+ },
667
+ "128083": {
668
+ "content": "<|reserved_special_token_75|>",
669
+ "lstrip": false,
670
+ "normalized": false,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": true
674
+ },
675
+ "128084": {
676
+ "content": "<|reserved_special_token_76|>",
677
+ "lstrip": false,
678
+ "normalized": false,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": true
682
+ },
683
+ "128085": {
684
+ "content": "<|reserved_special_token_77|>",
685
+ "lstrip": false,
686
+ "normalized": false,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": true
690
+ },
691
+ "128086": {
692
+ "content": "<|reserved_special_token_78|>",
693
+ "lstrip": false,
694
+ "normalized": false,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": true
698
+ },
699
+ "128087": {
700
+ "content": "<|reserved_special_token_79|>",
701
+ "lstrip": false,
702
+ "normalized": false,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": true
706
+ },
707
+ "128088": {
708
+ "content": "<|reserved_special_token_80|>",
709
+ "lstrip": false,
710
+ "normalized": false,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": true
714
+ },
715
+ "128089": {
716
+ "content": "<|reserved_special_token_81|>",
717
+ "lstrip": false,
718
+ "normalized": false,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": true
722
+ },
723
+ "128090": {
724
+ "content": "<|reserved_special_token_82|>",
725
+ "lstrip": false,
726
+ "normalized": false,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": true
730
+ },
731
+ "128091": {
732
+ "content": "<|reserved_special_token_83|>",
733
+ "lstrip": false,
734
+ "normalized": false,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": true
738
+ },
739
+ "128092": {
740
+ "content": "<|reserved_special_token_84|>",
741
+ "lstrip": false,
742
+ "normalized": false,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": true
746
+ },
747
+ "128093": {
748
+ "content": "<|reserved_special_token_85|>",
749
+ "lstrip": false,
750
+ "normalized": false,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": true
754
+ },
755
+ "128094": {
756
+ "content": "<|reserved_special_token_86|>",
757
+ "lstrip": false,
758
+ "normalized": false,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": true
762
+ },
763
+ "128095": {
764
+ "content": "<|reserved_special_token_87|>",
765
+ "lstrip": false,
766
+ "normalized": false,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": true
770
+ },
771
+ "128096": {
772
+ "content": "<|reserved_special_token_88|>",
773
+ "lstrip": false,
774
+ "normalized": false,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": true
778
+ },
779
+ "128097": {
780
+ "content": "<|reserved_special_token_89|>",
781
+ "lstrip": false,
782
+ "normalized": false,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": true
786
+ },
787
+ "128098": {
788
+ "content": "<|reserved_special_token_90|>",
789
+ "lstrip": false,
790
+ "normalized": false,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": true
794
+ },
795
+ "128099": {
796
+ "content": "<|reserved_special_token_91|>",
797
+ "lstrip": false,
798
+ "normalized": false,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": true
802
+ },
803
+ "128100": {
804
+ "content": "<|reserved_special_token_92|>",
805
+ "lstrip": false,
806
+ "normalized": false,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": true
810
+ },
811
+ "128101": {
812
+ "content": "<|reserved_special_token_93|>",
813
+ "lstrip": false,
814
+ "normalized": false,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": true
818
+ },
819
+ "128102": {
820
+ "content": "<|reserved_special_token_94|>",
821
+ "lstrip": false,
822
+ "normalized": false,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": true
826
+ },
827
+ "128103": {
828
+ "content": "<|reserved_special_token_95|>",
829
+ "lstrip": false,
830
+ "normalized": false,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": true
834
+ },
835
+ "128104": {
836
+ "content": "<|reserved_special_token_96|>",
837
+ "lstrip": false,
838
+ "normalized": false,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": true
842
+ },
843
+ "128105": {
844
+ "content": "<|reserved_special_token_97|>",
845
+ "lstrip": false,
846
+ "normalized": false,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": true
850
+ },
851
+ "128106": {
852
+ "content": "<|reserved_special_token_98|>",
853
+ "lstrip": false,
854
+ "normalized": false,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": true
858
+ },
859
+ "128107": {
860
+ "content": "<|reserved_special_token_99|>",
861
+ "lstrip": false,
862
+ "normalized": false,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": true
866
+ },
867
+ "128108": {
868
+ "content": "<|reserved_special_token_100|>",
869
+ "lstrip": false,
870
+ "normalized": false,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": true
874
+ },
875
+ "128109": {
876
+ "content": "<|reserved_special_token_101|>",
877
+ "lstrip": false,
878
+ "normalized": false,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": true
882
+ },
883
+ "128110": {
884
+ "content": "<|reserved_special_token_102|>",
885
+ "lstrip": false,
886
+ "normalized": false,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": true
890
+ },
891
+ "128111": {
892
+ "content": "<|reserved_special_token_103|>",
893
+ "lstrip": false,
894
+ "normalized": false,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": true
898
+ },
899
+ "128112": {
900
+ "content": "<|reserved_special_token_104|>",
901
+ "lstrip": false,
902
+ "normalized": false,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": true
906
+ },
907
+ "128113": {
908
+ "content": "<|reserved_special_token_105|>",
909
+ "lstrip": false,
910
+ "normalized": false,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": true
914
+ },
915
+ "128114": {
916
+ "content": "<|reserved_special_token_106|>",
917
+ "lstrip": false,
918
+ "normalized": false,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": true
922
+ },
923
+ "128115": {
924
+ "content": "<|reserved_special_token_107|>",
925
+ "lstrip": false,
926
+ "normalized": false,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": true
930
+ },
931
+ "128116": {
932
+ "content": "<|reserved_special_token_108|>",
933
+ "lstrip": false,
934
+ "normalized": false,
935
+ "rstrip": false,
936
+ "single_word": false,
937
+ "special": true
938
+ },
939
+ "128117": {
940
+ "content": "<|reserved_special_token_109|>",
941
+ "lstrip": false,
942
+ "normalized": false,
943
+ "rstrip": false,
944
+ "single_word": false,
945
+ "special": true
946
+ },
947
+ "128118": {
948
+ "content": "<|reserved_special_token_110|>",
949
+ "lstrip": false,
950
+ "normalized": false,
951
+ "rstrip": false,
952
+ "single_word": false,
953
+ "special": true
954
+ },
955
+ "128119": {
956
+ "content": "<|reserved_special_token_111|>",
957
+ "lstrip": false,
958
+ "normalized": false,
959
+ "rstrip": false,
960
+ "single_word": false,
961
+ "special": true
962
+ },
963
+ "128120": {
964
+ "content": "<|reserved_special_token_112|>",
965
+ "lstrip": false,
966
+ "normalized": false,
967
+ "rstrip": false,
968
+ "single_word": false,
969
+ "special": true
970
+ },
971
+ "128121": {
972
+ "content": "<|reserved_special_token_113|>",
973
+ "lstrip": false,
974
+ "normalized": false,
975
+ "rstrip": false,
976
+ "single_word": false,
977
+ "special": true
978
+ },
979
+ "128122": {
980
+ "content": "<|reserved_special_token_114|>",
981
+ "lstrip": false,
982
+ "normalized": false,
983
+ "rstrip": false,
984
+ "single_word": false,
985
+ "special": true
986
+ },
987
+ "128123": {
988
+ "content": "<|reserved_special_token_115|>",
989
+ "lstrip": false,
990
+ "normalized": false,
991
+ "rstrip": false,
992
+ "single_word": false,
993
+ "special": true
994
+ },
995
+ "128124": {
996
+ "content": "<|reserved_special_token_116|>",
997
+ "lstrip": false,
998
+ "normalized": false,
999
+ "rstrip": false,
1000
+ "single_word": false,
1001
+ "special": true
1002
+ },
1003
+ "128125": {
1004
+ "content": "<|reserved_special_token_117|>",
1005
+ "lstrip": false,
1006
+ "normalized": false,
1007
+ "rstrip": false,
1008
+ "single_word": false,
1009
+ "special": true
1010
+ },
1011
+ "128126": {
1012
+ "content": "<|reserved_special_token_118|>",
1013
+ "lstrip": false,
1014
+ "normalized": false,
1015
+ "rstrip": false,
1016
+ "single_word": false,
1017
+ "special": true
1018
+ },
1019
+ "128127": {
1020
+ "content": "<|reserved_special_token_119|>",
1021
+ "lstrip": false,
1022
+ "normalized": false,
1023
+ "rstrip": false,
1024
+ "single_word": false,
1025
+ "special": true
1026
+ },
1027
+ "128128": {
1028
+ "content": "<|reserved_special_token_120|>",
1029
+ "lstrip": false,
1030
+ "normalized": false,
1031
+ "rstrip": false,
1032
+ "single_word": false,
1033
+ "special": true
1034
+ },
1035
+ "128129": {
1036
+ "content": "<|reserved_special_token_121|>",
1037
+ "lstrip": false,
1038
+ "normalized": false,
1039
+ "rstrip": false,
1040
+ "single_word": false,
1041
+ "special": true
1042
+ },
1043
+ "128130": {
1044
+ "content": "<|reserved_special_token_122|>",
1045
+ "lstrip": false,
1046
+ "normalized": false,
1047
+ "rstrip": false,
1048
+ "single_word": false,
1049
+ "special": true
1050
+ },
1051
+ "128131": {
1052
+ "content": "<|reserved_special_token_123|>",
1053
+ "lstrip": false,
1054
+ "normalized": false,
1055
+ "rstrip": false,
1056
+ "single_word": false,
1057
+ "special": true
1058
+ },
1059
+ "128132": {
1060
+ "content": "<|reserved_special_token_124|>",
1061
+ "lstrip": false,
1062
+ "normalized": false,
1063
+ "rstrip": false,
1064
+ "single_word": false,
1065
+ "special": true
1066
+ },
1067
+ "128133": {
1068
+ "content": "<|reserved_special_token_125|>",
1069
+ "lstrip": false,
1070
+ "normalized": false,
1071
+ "rstrip": false,
1072
+ "single_word": false,
1073
+ "special": true
1074
+ },
1075
+ "128134": {
1076
+ "content": "<|reserved_special_token_126|>",
1077
+ "lstrip": false,
1078
+ "normalized": false,
1079
+ "rstrip": false,
1080
+ "single_word": false,
1081
+ "special": true
1082
+ },
1083
+ "128135": {
1084
+ "content": "<|reserved_special_token_127|>",
1085
+ "lstrip": false,
1086
+ "normalized": false,
1087
+ "rstrip": false,
1088
+ "single_word": false,
1089
+ "special": true
1090
+ },
1091
+ "128136": {
1092
+ "content": "<|reserved_special_token_128|>",
1093
+ "lstrip": false,
1094
+ "normalized": false,
1095
+ "rstrip": false,
1096
+ "single_word": false,
1097
+ "special": true
1098
+ },
1099
+ "128137": {
1100
+ "content": "<|reserved_special_token_129|>",
1101
+ "lstrip": false,
1102
+ "normalized": false,
1103
+ "rstrip": false,
1104
+ "single_word": false,
1105
+ "special": true
1106
+ },
1107
+ "128138": {
1108
+ "content": "<|reserved_special_token_130|>",
1109
+ "lstrip": false,
1110
+ "normalized": false,
1111
+ "rstrip": false,
1112
+ "single_word": false,
1113
+ "special": true
1114
+ },
1115
+ "128139": {
1116
+ "content": "<|reserved_special_token_131|>",
1117
+ "lstrip": false,
1118
+ "normalized": false,
1119
+ "rstrip": false,
1120
+ "single_word": false,
1121
+ "special": true
1122
+ },
1123
+ "128140": {
1124
+ "content": "<|reserved_special_token_132|>",
1125
+ "lstrip": false,
1126
+ "normalized": false,
1127
+ "rstrip": false,
1128
+ "single_word": false,
1129
+ "special": true
1130
+ },
1131
+ "128141": {
1132
+ "content": "<|reserved_special_token_133|>",
1133
+ "lstrip": false,
1134
+ "normalized": false,
1135
+ "rstrip": false,
1136
+ "single_word": false,
1137
+ "special": true
1138
+ },
1139
+ "128142": {
1140
+ "content": "<|reserved_special_token_134|>",
1141
+ "lstrip": false,
1142
+ "normalized": false,
1143
+ "rstrip": false,
1144
+ "single_word": false,
1145
+ "special": true
1146
+ },
1147
+ "128143": {
1148
+ "content": "<|reserved_special_token_135|>",
1149
+ "lstrip": false,
1150
+ "normalized": false,
1151
+ "rstrip": false,
1152
+ "single_word": false,
1153
+ "special": true
1154
+ },
1155
+ "128144": {
1156
+ "content": "<|reserved_special_token_136|>",
1157
+ "lstrip": false,
1158
+ "normalized": false,
1159
+ "rstrip": false,
1160
+ "single_word": false,
1161
+ "special": true
1162
+ },
1163
+ "128145": {
1164
+ "content": "<|reserved_special_token_137|>",
1165
+ "lstrip": false,
1166
+ "normalized": false,
1167
+ "rstrip": false,
1168
+ "single_word": false,
1169
+ "special": true
1170
+ },
1171
+ "128146": {
1172
+ "content": "<|reserved_special_token_138|>",
1173
+ "lstrip": false,
1174
+ "normalized": false,
1175
+ "rstrip": false,
1176
+ "single_word": false,
1177
+ "special": true
1178
+ },
1179
+ "128147": {
1180
+ "content": "<|reserved_special_token_139|>",
1181
+ "lstrip": false,
1182
+ "normalized": false,
1183
+ "rstrip": false,
1184
+ "single_word": false,
1185
+ "special": true
1186
+ },
1187
+ "128148": {
1188
+ "content": "<|reserved_special_token_140|>",
1189
+ "lstrip": false,
1190
+ "normalized": false,
1191
+ "rstrip": false,
1192
+ "single_word": false,
1193
+ "special": true
1194
+ },
1195
+ "128149": {
1196
+ "content": "<|reserved_special_token_141|>",
1197
+ "lstrip": false,
1198
+ "normalized": false,
1199
+ "rstrip": false,
1200
+ "single_word": false,
1201
+ "special": true
1202
+ },
1203
+ "128150": {
1204
+ "content": "<|reserved_special_token_142|>",
1205
+ "lstrip": false,
1206
+ "normalized": false,
1207
+ "rstrip": false,
1208
+ "single_word": false,
1209
+ "special": true
1210
+ },
1211
+ "128151": {
1212
+ "content": "<|reserved_special_token_143|>",
1213
+ "lstrip": false,
1214
+ "normalized": false,
1215
+ "rstrip": false,
1216
+ "single_word": false,
1217
+ "special": true
1218
+ },
1219
+ "128152": {
1220
+ "content": "<|reserved_special_token_144|>",
1221
+ "lstrip": false,
1222
+ "normalized": false,
1223
+ "rstrip": false,
1224
+ "single_word": false,
1225
+ "special": true
1226
+ },
1227
+ "128153": {
1228
+ "content": "<|reserved_special_token_145|>",
1229
+ "lstrip": false,
1230
+ "normalized": false,
1231
+ "rstrip": false,
1232
+ "single_word": false,
1233
+ "special": true
1234
+ },
1235
+ "128154": {
1236
+ "content": "<|reserved_special_token_146|>",
1237
+ "lstrip": false,
1238
+ "normalized": false,
1239
+ "rstrip": false,
1240
+ "single_word": false,
1241
+ "special": true
1242
+ },
1243
+ "128155": {
1244
+ "content": "<|reserved_special_token_147|>",
1245
+ "lstrip": false,
1246
+ "normalized": false,
1247
+ "rstrip": false,
1248
+ "single_word": false,
1249
+ "special": true
1250
+ },
1251
+ "128156": {
1252
+ "content": "<|reserved_special_token_148|>",
1253
+ "lstrip": false,
1254
+ "normalized": false,
1255
+ "rstrip": false,
1256
+ "single_word": false,
1257
+ "special": true
1258
+ },
1259
+ "128157": {
1260
+ "content": "<|reserved_special_token_149|>",
1261
+ "lstrip": false,
1262
+ "normalized": false,
1263
+ "rstrip": false,
1264
+ "single_word": false,
1265
+ "special": true
1266
+ },
1267
+ "128158": {
1268
+ "content": "<|reserved_special_token_150|>",
1269
+ "lstrip": false,
1270
+ "normalized": false,
1271
+ "rstrip": false,
1272
+ "single_word": false,
1273
+ "special": true
1274
+ },
1275
+ "128159": {
1276
+ "content": "<|reserved_special_token_151|>",
1277
+ "lstrip": false,
1278
+ "normalized": false,
1279
+ "rstrip": false,
1280
+ "single_word": false,
1281
+ "special": true
1282
+ },
1283
+ "128160": {
1284
+ "content": "<|reserved_special_token_152|>",
1285
+ "lstrip": false,
1286
+ "normalized": false,
1287
+ "rstrip": false,
1288
+ "single_word": false,
1289
+ "special": true
1290
+ },
1291
+ "128161": {
1292
+ "content": "<|reserved_special_token_153|>",
1293
+ "lstrip": false,
1294
+ "normalized": false,
1295
+ "rstrip": false,
1296
+ "single_word": false,
1297
+ "special": true
1298
+ },
1299
+ "128162": {
1300
+ "content": "<|reserved_special_token_154|>",
1301
+ "lstrip": false,
1302
+ "normalized": false,
1303
+ "rstrip": false,
1304
+ "single_word": false,
1305
+ "special": true
1306
+ },
1307
+ "128163": {
1308
+ "content": "<|reserved_special_token_155|>",
1309
+ "lstrip": false,
1310
+ "normalized": false,
1311
+ "rstrip": false,
1312
+ "single_word": false,
1313
+ "special": true
1314
+ },
1315
+ "128164": {
1316
+ "content": "<|reserved_special_token_156|>",
1317
+ "lstrip": false,
1318
+ "normalized": false,
1319
+ "rstrip": false,
1320
+ "single_word": false,
1321
+ "special": true
1322
+ },
1323
+ "128165": {
1324
+ "content": "<|reserved_special_token_157|>",
1325
+ "lstrip": false,
1326
+ "normalized": false,
1327
+ "rstrip": false,
1328
+ "single_word": false,
1329
+ "special": true
1330
+ },
1331
+ "128166": {
1332
+ "content": "<|reserved_special_token_158|>",
1333
+ "lstrip": false,
1334
+ "normalized": false,
1335
+ "rstrip": false,
1336
+ "single_word": false,
1337
+ "special": true
1338
+ },
1339
+ "128167": {
1340
+ "content": "<|reserved_special_token_159|>",
1341
+ "lstrip": false,
1342
+ "normalized": false,
1343
+ "rstrip": false,
1344
+ "single_word": false,
1345
+ "special": true
1346
+ },
1347
+ "128168": {
1348
+ "content": "<|reserved_special_token_160|>",
1349
+ "lstrip": false,
1350
+ "normalized": false,
1351
+ "rstrip": false,
1352
+ "single_word": false,
1353
+ "special": true
1354
+ },
1355
+ "128169": {
1356
+ "content": "<|reserved_special_token_161|>",
1357
+ "lstrip": false,
1358
+ "normalized": false,
1359
+ "rstrip": false,
1360
+ "single_word": false,
1361
+ "special": true
1362
+ },
1363
+ "128170": {
1364
+ "content": "<|reserved_special_token_162|>",
1365
+ "lstrip": false,
1366
+ "normalized": false,
1367
+ "rstrip": false,
1368
+ "single_word": false,
1369
+ "special": true
1370
+ },
1371
+ "128171": {
1372
+ "content": "<|reserved_special_token_163|>",
1373
+ "lstrip": false,
1374
+ "normalized": false,
1375
+ "rstrip": false,
1376
+ "single_word": false,
1377
+ "special": true
1378
+ },
1379
+ "128172": {
1380
+ "content": "<|reserved_special_token_164|>",
1381
+ "lstrip": false,
1382
+ "normalized": false,
1383
+ "rstrip": false,
1384
+ "single_word": false,
1385
+ "special": true
1386
+ },
1387
+ "128173": {
1388
+ "content": "<|reserved_special_token_165|>",
1389
+ "lstrip": false,
1390
+ "normalized": false,
1391
+ "rstrip": false,
1392
+ "single_word": false,
1393
+ "special": true
1394
+ },
1395
+ "128174": {
1396
+ "content": "<|reserved_special_token_166|>",
1397
+ "lstrip": false,
1398
+ "normalized": false,
1399
+ "rstrip": false,
1400
+ "single_word": false,
1401
+ "special": true
1402
+ },
1403
+ "128175": {
1404
+ "content": "<|reserved_special_token_167|>",
1405
+ "lstrip": false,
1406
+ "normalized": false,
1407
+ "rstrip": false,
1408
+ "single_word": false,
1409
+ "special": true
1410
+ },
1411
+ "128176": {
1412
+ "content": "<|reserved_special_token_168|>",
1413
+ "lstrip": false,
1414
+ "normalized": false,
1415
+ "rstrip": false,
1416
+ "single_word": false,
1417
+ "special": true
1418
+ },
1419
+ "128177": {
1420
+ "content": "<|reserved_special_token_169|>",
1421
+ "lstrip": false,
1422
+ "normalized": false,
1423
+ "rstrip": false,
1424
+ "single_word": false,
1425
+ "special": true
1426
+ },
1427
+ "128178": {
1428
+ "content": "<|reserved_special_token_170|>",
1429
+ "lstrip": false,
1430
+ "normalized": false,
1431
+ "rstrip": false,
1432
+ "single_word": false,
1433
+ "special": true
1434
+ },
1435
+ "128179": {
1436
+ "content": "<|reserved_special_token_171|>",
1437
+ "lstrip": false,
1438
+ "normalized": false,
1439
+ "rstrip": false,
1440
+ "single_word": false,
1441
+ "special": true
1442
+ },
1443
+ "128180": {
1444
+ "content": "<|reserved_special_token_172|>",
1445
+ "lstrip": false,
1446
+ "normalized": false,
1447
+ "rstrip": false,
1448
+ "single_word": false,
1449
+ "special": true
1450
+ },
1451
+ "128181": {
1452
+ "content": "<|reserved_special_token_173|>",
1453
+ "lstrip": false,
1454
+ "normalized": false,
1455
+ "rstrip": false,
1456
+ "single_word": false,
1457
+ "special": true
1458
+ },
1459
+ "128182": {
1460
+ "content": "<|reserved_special_token_174|>",
1461
+ "lstrip": false,
1462
+ "normalized": false,
1463
+ "rstrip": false,
1464
+ "single_word": false,
1465
+ "special": true
1466
+ },
1467
+ "128183": {
1468
+ "content": "<|reserved_special_token_175|>",
1469
+ "lstrip": false,
1470
+ "normalized": false,
1471
+ "rstrip": false,
1472
+ "single_word": false,
1473
+ "special": true
1474
+ },
1475
+ "128184": {
1476
+ "content": "<|reserved_special_token_176|>",
1477
+ "lstrip": false,
1478
+ "normalized": false,
1479
+ "rstrip": false,
1480
+ "single_word": false,
1481
+ "special": true
1482
+ },
1483
+ "128185": {
1484
+ "content": "<|reserved_special_token_177|>",
1485
+ "lstrip": false,
1486
+ "normalized": false,
1487
+ "rstrip": false,
1488
+ "single_word": false,
1489
+ "special": true
1490
+ },
1491
+ "128186": {
1492
+ "content": "<|reserved_special_token_178|>",
1493
+ "lstrip": false,
1494
+ "normalized": false,
1495
+ "rstrip": false,
1496
+ "single_word": false,
1497
+ "special": true
1498
+ },
1499
+ "128187": {
1500
+ "content": "<|reserved_special_token_179|>",
1501
+ "lstrip": false,
1502
+ "normalized": false,
1503
+ "rstrip": false,
1504
+ "single_word": false,
1505
+ "special": true
1506
+ },
1507
+ "128188": {
1508
+ "content": "<|reserved_special_token_180|>",
1509
+ "lstrip": false,
1510
+ "normalized": false,
1511
+ "rstrip": false,
1512
+ "single_word": false,
1513
+ "special": true
1514
+ },
1515
+ "128189": {
1516
+ "content": "<|reserved_special_token_181|>",
1517
+ "lstrip": false,
1518
+ "normalized": false,
1519
+ "rstrip": false,
1520
+ "single_word": false,
1521
+ "special": true
1522
+ },
1523
+ "128190": {
1524
+ "content": "<|reserved_special_token_182|>",
1525
+ "lstrip": false,
1526
+ "normalized": false,
1527
+ "rstrip": false,
1528
+ "single_word": false,
1529
+ "special": true
1530
+ },
1531
+ "128191": {
1532
+ "content": "<|reserved_special_token_183|>",
1533
+ "lstrip": false,
1534
+ "normalized": false,
1535
+ "rstrip": false,
1536
+ "single_word": false,
1537
+ "special": true
1538
+ },
1539
+ "128192": {
1540
+ "content": "<|reserved_special_token_184|>",
1541
+ "lstrip": false,
1542
+ "normalized": false,
1543
+ "rstrip": false,
1544
+ "single_word": false,
1545
+ "special": true
1546
+ },
1547
+ "128193": {
1548
+ "content": "<|reserved_special_token_185|>",
1549
+ "lstrip": false,
1550
+ "normalized": false,
1551
+ "rstrip": false,
1552
+ "single_word": false,
1553
+ "special": true
1554
+ },
1555
+ "128194": {
1556
+ "content": "<|reserved_special_token_186|>",
1557
+ "lstrip": false,
1558
+ "normalized": false,
1559
+ "rstrip": false,
1560
+ "single_word": false,
1561
+ "special": true
1562
+ },
1563
+ "128195": {
1564
+ "content": "<|reserved_special_token_187|>",
1565
+ "lstrip": false,
1566
+ "normalized": false,
1567
+ "rstrip": false,
1568
+ "single_word": false,
1569
+ "special": true
1570
+ },
1571
+ "128196": {
1572
+ "content": "<|reserved_special_token_188|>",
1573
+ "lstrip": false,
1574
+ "normalized": false,
1575
+ "rstrip": false,
1576
+ "single_word": false,
1577
+ "special": true
1578
+ },
1579
+ "128197": {
1580
+ "content": "<|reserved_special_token_189|>",
1581
+ "lstrip": false,
1582
+ "normalized": false,
1583
+ "rstrip": false,
1584
+ "single_word": false,
1585
+ "special": true
1586
+ },
1587
+ "128198": {
1588
+ "content": "<|reserved_special_token_190|>",
1589
+ "lstrip": false,
1590
+ "normalized": false,
1591
+ "rstrip": false,
1592
+ "single_word": false,
1593
+ "special": true
1594
+ },
1595
+ "128199": {
1596
+ "content": "<|reserved_special_token_191|>",
1597
+ "lstrip": false,
1598
+ "normalized": false,
1599
+ "rstrip": false,
1600
+ "single_word": false,
1601
+ "special": true
1602
+ },
1603
+ "128200": {
1604
+ "content": "<|reserved_special_token_192|>",
1605
+ "lstrip": false,
1606
+ "normalized": false,
1607
+ "rstrip": false,
1608
+ "single_word": false,
1609
+ "special": true
1610
+ },
1611
+ "128201": {
1612
+ "content": "<|reserved_special_token_193|>",
1613
+ "lstrip": false,
1614
+ "normalized": false,
1615
+ "rstrip": false,
1616
+ "single_word": false,
1617
+ "special": true
1618
+ },
1619
+ "128202": {
1620
+ "content": "<|reserved_special_token_194|>",
1621
+ "lstrip": false,
1622
+ "normalized": false,
1623
+ "rstrip": false,
1624
+ "single_word": false,
1625
+ "special": true
1626
+ },
1627
+ "128203": {
1628
+ "content": "<|reserved_special_token_195|>",
1629
+ "lstrip": false,
1630
+ "normalized": false,
1631
+ "rstrip": false,
1632
+ "single_word": false,
1633
+ "special": true
1634
+ },
1635
+ "128204": {
1636
+ "content": "<|reserved_special_token_196|>",
1637
+ "lstrip": false,
1638
+ "normalized": false,
1639
+ "rstrip": false,
1640
+ "single_word": false,
1641
+ "special": true
1642
+ },
1643
+ "128205": {
1644
+ "content": "<|reserved_special_token_197|>",
1645
+ "lstrip": false,
1646
+ "normalized": false,
1647
+ "rstrip": false,
1648
+ "single_word": false,
1649
+ "special": true
1650
+ },
1651
+ "128206": {
1652
+ "content": "<|reserved_special_token_198|>",
1653
+ "lstrip": false,
1654
+ "normalized": false,
1655
+ "rstrip": false,
1656
+ "single_word": false,
1657
+ "special": true
1658
+ },
1659
+ "128207": {
1660
+ "content": "<|reserved_special_token_199|>",
1661
+ "lstrip": false,
1662
+ "normalized": false,
1663
+ "rstrip": false,
1664
+ "single_word": false,
1665
+ "special": true
1666
+ },
1667
+ "128208": {
1668
+ "content": "<|reserved_special_token_200|>",
1669
+ "lstrip": false,
1670
+ "normalized": false,
1671
+ "rstrip": false,
1672
+ "single_word": false,
1673
+ "special": true
1674
+ },
1675
+ "128209": {
1676
+ "content": "<|reserved_special_token_201|>",
1677
+ "lstrip": false,
1678
+ "normalized": false,
1679
+ "rstrip": false,
1680
+ "single_word": false,
1681
+ "special": true
1682
+ },
1683
+ "128210": {
1684
+ "content": "<|reserved_special_token_202|>",
1685
+ "lstrip": false,
1686
+ "normalized": false,
1687
+ "rstrip": false,
1688
+ "single_word": false,
1689
+ "special": true
1690
+ },
1691
+ "128211": {
1692
+ "content": "<|reserved_special_token_203|>",
1693
+ "lstrip": false,
1694
+ "normalized": false,
1695
+ "rstrip": false,
1696
+ "single_word": false,
1697
+ "special": true
1698
+ },
1699
+ "128212": {
1700
+ "content": "<|reserved_special_token_204|>",
1701
+ "lstrip": false,
1702
+ "normalized": false,
1703
+ "rstrip": false,
1704
+ "single_word": false,
1705
+ "special": true
1706
+ },
1707
+ "128213": {
1708
+ "content": "<|reserved_special_token_205|>",
1709
+ "lstrip": false,
1710
+ "normalized": false,
1711
+ "rstrip": false,
1712
+ "single_word": false,
1713
+ "special": true
1714
+ },
1715
+ "128214": {
1716
+ "content": "<|reserved_special_token_206|>",
1717
+ "lstrip": false,
1718
+ "normalized": false,
1719
+ "rstrip": false,
1720
+ "single_word": false,
1721
+ "special": true
1722
+ },
1723
+ "128215": {
1724
+ "content": "<|reserved_special_token_207|>",
1725
+ "lstrip": false,
1726
+ "normalized": false,
1727
+ "rstrip": false,
1728
+ "single_word": false,
1729
+ "special": true
1730
+ },
1731
+ "128216": {
1732
+ "content": "<|reserved_special_token_208|>",
1733
+ "lstrip": false,
1734
+ "normalized": false,
1735
+ "rstrip": false,
1736
+ "single_word": false,
1737
+ "special": true
1738
+ },
1739
+ "128217": {
1740
+ "content": "<|reserved_special_token_209|>",
1741
+ "lstrip": false,
1742
+ "normalized": false,
1743
+ "rstrip": false,
1744
+ "single_word": false,
1745
+ "special": true
1746
+ },
1747
+ "128218": {
1748
+ "content": "<|reserved_special_token_210|>",
1749
+ "lstrip": false,
1750
+ "normalized": false,
1751
+ "rstrip": false,
1752
+ "single_word": false,
1753
+ "special": true
1754
+ },
1755
+ "128219": {
1756
+ "content": "<|reserved_special_token_211|>",
1757
+ "lstrip": false,
1758
+ "normalized": false,
1759
+ "rstrip": false,
1760
+ "single_word": false,
1761
+ "special": true
1762
+ },
1763
+ "128220": {
1764
+ "content": "<|reserved_special_token_212|>",
1765
+ "lstrip": false,
1766
+ "normalized": false,
1767
+ "rstrip": false,
1768
+ "single_word": false,
1769
+ "special": true
1770
+ },
1771
+ "128221": {
1772
+ "content": "<|reserved_special_token_213|>",
1773
+ "lstrip": false,
1774
+ "normalized": false,
1775
+ "rstrip": false,
1776
+ "single_word": false,
1777
+ "special": true
1778
+ },
1779
+ "128222": {
1780
+ "content": "<|reserved_special_token_214|>",
1781
+ "lstrip": false,
1782
+ "normalized": false,
1783
+ "rstrip": false,
1784
+ "single_word": false,
1785
+ "special": true
1786
+ },
1787
+ "128223": {
1788
+ "content": "<|reserved_special_token_215|>",
1789
+ "lstrip": false,
1790
+ "normalized": false,
1791
+ "rstrip": false,
1792
+ "single_word": false,
1793
+ "special": true
1794
+ },
1795
+ "128224": {
1796
+ "content": "<|reserved_special_token_216|>",
1797
+ "lstrip": false,
1798
+ "normalized": false,
1799
+ "rstrip": false,
1800
+ "single_word": false,
1801
+ "special": true
1802
+ },
1803
+ "128225": {
1804
+ "content": "<|reserved_special_token_217|>",
1805
+ "lstrip": false,
1806
+ "normalized": false,
1807
+ "rstrip": false,
1808
+ "single_word": false,
1809
+ "special": true
1810
+ },
1811
+ "128226": {
1812
+ "content": "<|reserved_special_token_218|>",
1813
+ "lstrip": false,
1814
+ "normalized": false,
1815
+ "rstrip": false,
1816
+ "single_word": false,
1817
+ "special": true
1818
+ },
1819
+ "128227": {
1820
+ "content": "<|reserved_special_token_219|>",
1821
+ "lstrip": false,
1822
+ "normalized": false,
1823
+ "rstrip": false,
1824
+ "single_word": false,
1825
+ "special": true
1826
+ },
1827
+ "128228": {
1828
+ "content": "<|reserved_special_token_220|>",
1829
+ "lstrip": false,
1830
+ "normalized": false,
1831
+ "rstrip": false,
1832
+ "single_word": false,
1833
+ "special": true
1834
+ },
1835
+ "128229": {
1836
+ "content": "<|reserved_special_token_221|>",
1837
+ "lstrip": false,
1838
+ "normalized": false,
1839
+ "rstrip": false,
1840
+ "single_word": false,
1841
+ "special": true
1842
+ },
1843
+ "128230": {
1844
+ "content": "<|reserved_special_token_222|>",
1845
+ "lstrip": false,
1846
+ "normalized": false,
1847
+ "rstrip": false,
1848
+ "single_word": false,
1849
+ "special": true
1850
+ },
1851
+ "128231": {
1852
+ "content": "<|reserved_special_token_223|>",
1853
+ "lstrip": false,
1854
+ "normalized": false,
1855
+ "rstrip": false,
1856
+ "single_word": false,
1857
+ "special": true
1858
+ },
1859
+ "128232": {
1860
+ "content": "<|reserved_special_token_224|>",
1861
+ "lstrip": false,
1862
+ "normalized": false,
1863
+ "rstrip": false,
1864
+ "single_word": false,
1865
+ "special": true
1866
+ },
1867
+ "128233": {
1868
+ "content": "<|reserved_special_token_225|>",
1869
+ "lstrip": false,
1870
+ "normalized": false,
1871
+ "rstrip": false,
1872
+ "single_word": false,
1873
+ "special": true
1874
+ },
1875
+ "128234": {
1876
+ "content": "<|reserved_special_token_226|>",
1877
+ "lstrip": false,
1878
+ "normalized": false,
1879
+ "rstrip": false,
1880
+ "single_word": false,
1881
+ "special": true
1882
+ },
1883
+ "128235": {
1884
+ "content": "<|reserved_special_token_227|>",
1885
+ "lstrip": false,
1886
+ "normalized": false,
1887
+ "rstrip": false,
1888
+ "single_word": false,
1889
+ "special": true
1890
+ },
1891
+ "128236": {
1892
+ "content": "<|reserved_special_token_228|>",
1893
+ "lstrip": false,
1894
+ "normalized": false,
1895
+ "rstrip": false,
1896
+ "single_word": false,
1897
+ "special": true
1898
+ },
1899
+ "128237": {
1900
+ "content": "<|reserved_special_token_229|>",
1901
+ "lstrip": false,
1902
+ "normalized": false,
1903
+ "rstrip": false,
1904
+ "single_word": false,
1905
+ "special": true
1906
+ },
1907
+ "128238": {
1908
+ "content": "<|reserved_special_token_230|>",
1909
+ "lstrip": false,
1910
+ "normalized": false,
1911
+ "rstrip": false,
1912
+ "single_word": false,
1913
+ "special": true
1914
+ },
1915
+ "128239": {
1916
+ "content": "<|reserved_special_token_231|>",
1917
+ "lstrip": false,
1918
+ "normalized": false,
1919
+ "rstrip": false,
1920
+ "single_word": false,
1921
+ "special": true
1922
+ },
1923
+ "128240": {
1924
+ "content": "<|reserved_special_token_232|>",
1925
+ "lstrip": false,
1926
+ "normalized": false,
1927
+ "rstrip": false,
1928
+ "single_word": false,
1929
+ "special": true
1930
+ },
1931
+ "128241": {
1932
+ "content": "<|reserved_special_token_233|>",
1933
+ "lstrip": false,
1934
+ "normalized": false,
1935
+ "rstrip": false,
1936
+ "single_word": false,
1937
+ "special": true
1938
+ },
1939
+ "128242": {
1940
+ "content": "<|reserved_special_token_234|>",
1941
+ "lstrip": false,
1942
+ "normalized": false,
1943
+ "rstrip": false,
1944
+ "single_word": false,
1945
+ "special": true
1946
+ },
1947
+ "128243": {
1948
+ "content": "<|reserved_special_token_235|>",
1949
+ "lstrip": false,
1950
+ "normalized": false,
1951
+ "rstrip": false,
1952
+ "single_word": false,
1953
+ "special": true
1954
+ },
1955
+ "128244": {
1956
+ "content": "<|reserved_special_token_236|>",
1957
+ "lstrip": false,
1958
+ "normalized": false,
1959
+ "rstrip": false,
1960
+ "single_word": false,
1961
+ "special": true
1962
+ },
1963
+ "128245": {
1964
+ "content": "<|reserved_special_token_237|>",
1965
+ "lstrip": false,
1966
+ "normalized": false,
1967
+ "rstrip": false,
1968
+ "single_word": false,
1969
+ "special": true
1970
+ },
1971
+ "128246": {
1972
+ "content": "<|reserved_special_token_238|>",
1973
+ "lstrip": false,
1974
+ "normalized": false,
1975
+ "rstrip": false,
1976
+ "single_word": false,
1977
+ "special": true
1978
+ },
1979
+ "128247": {
1980
+ "content": "<|reserved_special_token_239|>",
1981
+ "lstrip": false,
1982
+ "normalized": false,
1983
+ "rstrip": false,
1984
+ "single_word": false,
1985
+ "special": true
1986
+ },
1987
+ "128248": {
1988
+ "content": "<|reserved_special_token_240|>",
1989
+ "lstrip": false,
1990
+ "normalized": false,
1991
+ "rstrip": false,
1992
+ "single_word": false,
1993
+ "special": true
1994
+ },
1995
+ "128249": {
1996
+ "content": "<|reserved_special_token_241|>",
1997
+ "lstrip": false,
1998
+ "normalized": false,
1999
+ "rstrip": false,
2000
+ "single_word": false,
2001
+ "special": true
2002
+ },
2003
+ "128250": {
2004
+ "content": "<|reserved_special_token_242|>",
2005
+ "lstrip": false,
2006
+ "normalized": false,
2007
+ "rstrip": false,
2008
+ "single_word": false,
2009
+ "special": true
2010
+ },
2011
+ "128251": {
2012
+ "content": "<|reserved_special_token_243|>",
2013
+ "lstrip": false,
2014
+ "normalized": false,
2015
+ "rstrip": false,
2016
+ "single_word": false,
2017
+ "special": true
2018
+ },
2019
+ "128252": {
2020
+ "content": "<|reserved_special_token_244|>",
2021
+ "lstrip": false,
2022
+ "normalized": false,
2023
+ "rstrip": false,
2024
+ "single_word": false,
2025
+ "special": true
2026
+ },
2027
+ "128253": {
2028
+ "content": "<|reserved_special_token_245|>",
2029
+ "lstrip": false,
2030
+ "normalized": false,
2031
+ "rstrip": false,
2032
+ "single_word": false,
2033
+ "special": true
2034
+ },
2035
+ "128254": {
2036
+ "content": "<|reserved_special_token_246|>",
2037
+ "lstrip": false,
2038
+ "normalized": false,
2039
+ "rstrip": false,
2040
+ "single_word": false,
2041
+ "special": true
2042
+ },
2043
+ "128255": {
2044
+ "content": "<|reserved_special_token_247|>",
2045
+ "lstrip": false,
2046
+ "normalized": false,
2047
+ "rstrip": false,
2048
+ "single_word": false,
2049
+ "special": true
2050
+ },
2051
+ "128256": {
2052
+ "content": "[INST]",
2053
+ "lstrip": false,
2054
+ "normalized": false,
2055
+ "rstrip": false,
2056
+ "single_word": false,
2057
+ "special": true
2058
+ },
2059
+ "128257": {
2060
+ "content": "[/INST]",
2061
+ "lstrip": false,
2062
+ "normalized": false,
2063
+ "rstrip": false,
2064
+ "single_word": false,
2065
+ "special": true
2066
+ },
2067
+ "128258": {
2068
+ "content": "<think>",
2069
+ "lstrip": false,
2070
+ "normalized": false,
2071
+ "rstrip": false,
2072
+ "single_word": false,
2073
+ "special": true
2074
+ },
2075
+ "128259": {
2076
+ "content": "</think>",
2077
+ "lstrip": false,
2078
+ "normalized": false,
2079
+ "rstrip": false,
2080
+ "single_word": false,
2081
+ "special": true
2082
+ }
2083
+ },
2084
+ "additional_special_tokens": [
2085
+ "<think>",
2086
+ "</think>"
2087
+ ],
2088
+ "bos_token": "<|begin_of_text|>",
2089
+ "clean_up_tokenization_spaces": true,
2090
+ "eos_token": "<|end_of_text|>",
2091
+ "extra_special_tokens": {},
2092
+ "model_input_names": [
2093
+ "input_ids",
2094
+ "attention_mask"
2095
+ ],
2096
+ "model_max_length": 131072,
2097
+ "pad_token": "<|finetune_right_pad_id|>",
2098
+ "tokenizer_class": "PreTrainedTokenizerFast"
2099
+ }
trainer_state.json ADDED
@@ -0,0 +1,2674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 3.0,
6
+ "eval_steps": 500,
7
+ "global_step": 330,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.009142857142857144,
14
+ "grad_norm": 3.788423157943329,
15
+ "learning_rate": 0.0,
16
+ "loss": 1.0171,
17
+ "num_tokens": 414791.0,
18
+ "step": 1
19
+ },
20
+ {
21
+ "epoch": 0.018285714285714287,
22
+ "grad_norm": 3.7486067929136304,
23
+ "learning_rate": 2.9411764705882356e-07,
24
+ "loss": 1.0458,
25
+ "num_tokens": 816383.0,
26
+ "step": 2
27
+ },
28
+ {
29
+ "epoch": 0.027428571428571427,
30
+ "grad_norm": 3.6248817482667772,
31
+ "learning_rate": 5.882352941176471e-07,
32
+ "loss": 1.0156,
33
+ "num_tokens": 1248217.0,
34
+ "step": 3
35
+ },
36
+ {
37
+ "epoch": 0.036571428571428574,
38
+ "grad_norm": 3.8501840793231983,
39
+ "learning_rate": 8.823529411764707e-07,
40
+ "loss": 0.9988,
41
+ "num_tokens": 1657241.0,
42
+ "step": 4
43
+ },
44
+ {
45
+ "epoch": 0.045714285714285714,
46
+ "grad_norm": 3.5112388358944506,
47
+ "learning_rate": 1.1764705882352942e-06,
48
+ "loss": 1.0094,
49
+ "num_tokens": 2097247.0,
50
+ "step": 5
51
+ },
52
+ {
53
+ "epoch": 0.054857142857142854,
54
+ "grad_norm": 3.305630960821923,
55
+ "learning_rate": 1.4705882352941177e-06,
56
+ "loss": 1.0067,
57
+ "num_tokens": 2518049.0,
58
+ "step": 6
59
+ },
60
+ {
61
+ "epoch": 0.064,
62
+ "grad_norm": 2.763998457471438,
63
+ "learning_rate": 1.7647058823529414e-06,
64
+ "loss": 0.9815,
65
+ "num_tokens": 2911785.0,
66
+ "step": 7
67
+ },
68
+ {
69
+ "epoch": 0.07314285714285715,
70
+ "grad_norm": 2.553777222235427,
71
+ "learning_rate": 2.058823529411765e-06,
72
+ "loss": 0.9884,
73
+ "num_tokens": 3304861.0,
74
+ "step": 8
75
+ },
76
+ {
77
+ "epoch": 0.08228571428571428,
78
+ "grad_norm": 1.7314602879429424,
79
+ "learning_rate": 2.3529411764705885e-06,
80
+ "loss": 0.9657,
81
+ "num_tokens": 3744952.0,
82
+ "step": 9
83
+ },
84
+ {
85
+ "epoch": 0.09142857142857143,
86
+ "grad_norm": 1.639488114011472,
87
+ "learning_rate": 2.647058823529412e-06,
88
+ "loss": 0.9173,
89
+ "num_tokens": 4171394.0,
90
+ "step": 10
91
+ },
92
+ {
93
+ "epoch": 0.10057142857142858,
94
+ "grad_norm": 1.605492636449322,
95
+ "learning_rate": 2.9411764705882355e-06,
96
+ "loss": 0.9402,
97
+ "num_tokens": 4593000.0,
98
+ "step": 11
99
+ },
100
+ {
101
+ "epoch": 0.10971428571428571,
102
+ "grad_norm": 1.7144819324641203,
103
+ "learning_rate": 3.2352941176470594e-06,
104
+ "loss": 0.931,
105
+ "num_tokens": 5051170.0,
106
+ "step": 12
107
+ },
108
+ {
109
+ "epoch": 0.11885714285714286,
110
+ "grad_norm": 2.1335893786941633,
111
+ "learning_rate": 3.529411764705883e-06,
112
+ "loss": 0.873,
113
+ "num_tokens": 5462412.0,
114
+ "step": 13
115
+ },
116
+ {
117
+ "epoch": 0.128,
118
+ "grad_norm": 1.8322905891256291,
119
+ "learning_rate": 3.8235294117647055e-06,
120
+ "loss": 0.8839,
121
+ "num_tokens": 5897197.0,
122
+ "step": 14
123
+ },
124
+ {
125
+ "epoch": 0.13714285714285715,
126
+ "grad_norm": 1.3855988250523144,
127
+ "learning_rate": 4.11764705882353e-06,
128
+ "loss": 0.8531,
129
+ "num_tokens": 6310546.0,
130
+ "step": 15
131
+ },
132
+ {
133
+ "epoch": 0.1462857142857143,
134
+ "grad_norm": 1.2583291182608385,
135
+ "learning_rate": 4.411764705882353e-06,
136
+ "loss": 0.8449,
137
+ "num_tokens": 6737190.0,
138
+ "step": 16
139
+ },
140
+ {
141
+ "epoch": 0.15542857142857142,
142
+ "grad_norm": 1.7093622730710312,
143
+ "learning_rate": 4.705882352941177e-06,
144
+ "loss": 0.8459,
145
+ "num_tokens": 7152523.0,
146
+ "step": 17
147
+ },
148
+ {
149
+ "epoch": 0.16457142857142856,
150
+ "grad_norm": 1.3548099953678236,
151
+ "learning_rate": 5e-06,
152
+ "loss": 0.8382,
153
+ "num_tokens": 7614210.0,
154
+ "step": 18
155
+ },
156
+ {
157
+ "epoch": 0.1737142857142857,
158
+ "grad_norm": 1.2411537968080228,
159
+ "learning_rate": 4.999874073411688e-06,
160
+ "loss": 0.8003,
161
+ "num_tokens": 8005070.0,
162
+ "step": 19
163
+ },
164
+ {
165
+ "epoch": 0.18285714285714286,
166
+ "grad_norm": 1.1063653911297622,
167
+ "learning_rate": 4.999496306332755e-06,
168
+ "loss": 0.8161,
169
+ "num_tokens": 8458443.0,
170
+ "step": 20
171
+ },
172
+ {
173
+ "epoch": 0.192,
174
+ "grad_norm": 0.8870246401694026,
175
+ "learning_rate": 4.998866736819938e-06,
176
+ "loss": 0.8175,
177
+ "num_tokens": 8886223.0,
178
+ "step": 21
179
+ },
180
+ {
181
+ "epoch": 0.20114285714285715,
182
+ "grad_norm": 0.8378533988358792,
183
+ "learning_rate": 4.997985428296869e-06,
184
+ "loss": 0.79,
185
+ "num_tokens": 9308544.0,
186
+ "step": 22
187
+ },
188
+ {
189
+ "epoch": 0.2102857142857143,
190
+ "grad_norm": 0.8680117397968262,
191
+ "learning_rate": 4.996852469547688e-06,
192
+ "loss": 0.7697,
193
+ "num_tokens": 9738279.0,
194
+ "step": 23
195
+ },
196
+ {
197
+ "epoch": 0.21942857142857142,
198
+ "grad_norm": 0.7814254549991426,
199
+ "learning_rate": 4.9954679747081e-06,
200
+ "loss": 0.7791,
201
+ "num_tokens": 10176776.0,
202
+ "step": 24
203
+ },
204
+ {
205
+ "epoch": 0.22857142857142856,
206
+ "grad_norm": 0.6718931761429743,
207
+ "learning_rate": 4.993832083253874e-06,
208
+ "loss": 0.7549,
209
+ "num_tokens": 10607900.0,
210
+ "step": 25
211
+ },
212
+ {
213
+ "epoch": 0.2377142857142857,
214
+ "grad_norm": 0.7203929761049984,
215
+ "learning_rate": 4.991944959986793e-06,
216
+ "loss": 0.7647,
217
+ "num_tokens": 11029388.0,
218
+ "step": 26
219
+ },
220
+ {
221
+ "epoch": 0.24685714285714286,
222
+ "grad_norm": 0.7147312112109525,
223
+ "learning_rate": 4.989806795018054e-06,
224
+ "loss": 0.7638,
225
+ "num_tokens": 11457489.0,
226
+ "step": 27
227
+ },
228
+ {
229
+ "epoch": 0.256,
230
+ "grad_norm": 0.6521467633335539,
231
+ "learning_rate": 4.987417803749112e-06,
232
+ "loss": 0.7835,
233
+ "num_tokens": 11864446.0,
234
+ "step": 28
235
+ },
236
+ {
237
+ "epoch": 0.2651428571428571,
238
+ "grad_norm": 0.6625801512953233,
239
+ "learning_rate": 4.984778226849983e-06,
240
+ "loss": 0.7627,
241
+ "num_tokens": 12248848.0,
242
+ "step": 29
243
+ },
244
+ {
245
+ "epoch": 0.2742857142857143,
246
+ "grad_norm": 0.630181987147504,
247
+ "learning_rate": 4.981888330234998e-06,
248
+ "loss": 0.75,
249
+ "num_tokens": 12663440.0,
250
+ "step": 30
251
+ },
252
+ {
253
+ "epoch": 0.2834285714285714,
254
+ "grad_norm": 0.6381224000786306,
255
+ "learning_rate": 4.978748405036014e-06,
256
+ "loss": 0.7493,
257
+ "num_tokens": 13034106.0,
258
+ "step": 31
259
+ },
260
+ {
261
+ "epoch": 0.2925714285714286,
262
+ "grad_norm": 0.6161172594215469,
263
+ "learning_rate": 4.975358767573085e-06,
264
+ "loss": 0.7586,
265
+ "num_tokens": 13448760.0,
266
+ "step": 32
267
+ },
268
+ {
269
+ "epoch": 0.3017142857142857,
270
+ "grad_norm": 0.5841875666239731,
271
+ "learning_rate": 4.971719759322596e-06,
272
+ "loss": 0.7526,
273
+ "num_tokens": 13907189.0,
274
+ "step": 33
275
+ },
276
+ {
277
+ "epoch": 0.31085714285714283,
278
+ "grad_norm": 0.6291433005199626,
279
+ "learning_rate": 4.967831746882863e-06,
280
+ "loss": 0.7424,
281
+ "num_tokens": 14306209.0,
282
+ "step": 34
283
+ },
284
+ {
285
+ "epoch": 0.32,
286
+ "grad_norm": 0.5515606238598844,
287
+ "learning_rate": 4.9636951219372e-06,
288
+ "loss": 0.7547,
289
+ "num_tokens": 14720460.0,
290
+ "step": 35
291
+ },
292
+ {
293
+ "epoch": 0.3291428571428571,
294
+ "grad_norm": 0.5614465276031775,
295
+ "learning_rate": 4.959310301214458e-06,
296
+ "loss": 0.7288,
297
+ "num_tokens": 15132163.0,
298
+ "step": 36
299
+ },
300
+ {
301
+ "epoch": 0.3382857142857143,
302
+ "grad_norm": 0.6054958180004087,
303
+ "learning_rate": 4.954677726447049e-06,
304
+ "loss": 0.7372,
305
+ "num_tokens": 15497706.0,
306
+ "step": 37
307
+ },
308
+ {
309
+ "epoch": 0.3474285714285714,
310
+ "grad_norm": 0.5245577430458518,
311
+ "learning_rate": 4.949797864326442e-06,
312
+ "loss": 0.7084,
313
+ "num_tokens": 15931655.0,
314
+ "step": 38
315
+ },
316
+ {
317
+ "epoch": 0.3565714285714286,
318
+ "grad_norm": 0.5254082660408352,
319
+ "learning_rate": 4.944671206456148e-06,
320
+ "loss": 0.7091,
321
+ "num_tokens": 16341137.0,
322
+ "step": 39
323
+ },
324
+ {
325
+ "epoch": 0.3657142857142857,
326
+ "grad_norm": 0.5538924183973399,
327
+ "learning_rate": 4.939298269302194e-06,
328
+ "loss": 0.7452,
329
+ "num_tokens": 16776527.0,
330
+ "step": 40
331
+ },
332
+ {
333
+ "epoch": 0.37485714285714283,
334
+ "grad_norm": 0.5542948467918837,
335
+ "learning_rate": 4.933679594141096e-06,
336
+ "loss": 0.7374,
337
+ "num_tokens": 17183370.0,
338
+ "step": 41
339
+ },
340
+ {
341
+ "epoch": 0.384,
342
+ "grad_norm": 0.5380100952791218,
343
+ "learning_rate": 4.9278157470053305e-06,
344
+ "loss": 0.7244,
345
+ "num_tokens": 17602865.0,
346
+ "step": 42
347
+ },
348
+ {
349
+ "epoch": 0.3931428571428571,
350
+ "grad_norm": 0.5519363633677055,
351
+ "learning_rate": 4.9217073186263075e-06,
352
+ "loss": 0.7253,
353
+ "num_tokens": 18002059.0,
354
+ "step": 43
355
+ },
356
+ {
357
+ "epoch": 0.4022857142857143,
358
+ "grad_norm": 0.5659780047314049,
359
+ "learning_rate": 4.915354924374864e-06,
360
+ "loss": 0.7209,
361
+ "num_tokens": 18417553.0,
362
+ "step": 44
363
+ },
364
+ {
365
+ "epoch": 0.4114285714285714,
366
+ "grad_norm": 0.5488792186326696,
367
+ "learning_rate": 4.908759204199268e-06,
368
+ "loss": 0.7396,
369
+ "num_tokens": 18840096.0,
370
+ "step": 45
371
+ },
372
+ {
373
+ "epoch": 0.4205714285714286,
374
+ "grad_norm": 0.5252663101552106,
375
+ "learning_rate": 4.901920822560753e-06,
376
+ "loss": 0.7127,
377
+ "num_tokens": 19258374.0,
378
+ "step": 46
379
+ },
380
+ {
381
+ "epoch": 0.4297142857142857,
382
+ "grad_norm": 0.5591357036458139,
383
+ "learning_rate": 4.89484046836657e-06,
384
+ "loss": 0.7206,
385
+ "num_tokens": 19680030.0,
386
+ "step": 47
387
+ },
388
+ {
389
+ "epoch": 0.43885714285714283,
390
+ "grad_norm": 0.5556426602282065,
391
+ "learning_rate": 4.887518854900603e-06,
392
+ "loss": 0.697,
393
+ "num_tokens": 20098565.0,
394
+ "step": 48
395
+ },
396
+ {
397
+ "epoch": 0.448,
398
+ "grad_norm": 0.5510078792794185,
399
+ "learning_rate": 4.879956719751491e-06,
400
+ "loss": 0.745,
401
+ "num_tokens": 20542243.0,
402
+ "step": 49
403
+ },
404
+ {
405
+ "epoch": 0.45714285714285713,
406
+ "grad_norm": 0.5396047474298085,
407
+ "learning_rate": 4.87215482473834e-06,
408
+ "loss": 0.713,
409
+ "num_tokens": 20958663.0,
410
+ "step": 50
411
+ },
412
+ {
413
+ "epoch": 0.4662857142857143,
414
+ "grad_norm": 0.5199497319908324,
415
+ "learning_rate": 4.864113955833967e-06,
416
+ "loss": 0.7014,
417
+ "num_tokens": 21384478.0,
418
+ "step": 51
419
+ },
420
+ {
421
+ "epoch": 0.4754285714285714,
422
+ "grad_norm": 0.5529473043892272,
423
+ "learning_rate": 4.855834923085721e-06,
424
+ "loss": 0.7063,
425
+ "num_tokens": 21791929.0,
426
+ "step": 52
427
+ },
428
+ {
429
+ "epoch": 0.4845714285714286,
430
+ "grad_norm": 0.5585081497740281,
431
+ "learning_rate": 4.847318560533882e-06,
432
+ "loss": 0.7248,
433
+ "num_tokens": 22203013.0,
434
+ "step": 53
435
+ },
436
+ {
437
+ "epoch": 0.4937142857142857,
438
+ "grad_norm": 0.5315034055299764,
439
+ "learning_rate": 4.838565726127636e-06,
440
+ "loss": 0.6891,
441
+ "num_tokens": 22601890.0,
442
+ "step": 54
443
+ },
444
+ {
445
+ "epoch": 0.5028571428571429,
446
+ "grad_norm": 0.527611783496754,
447
+ "learning_rate": 4.829577301638642e-06,
448
+ "loss": 0.7488,
449
+ "num_tokens": 23070128.0,
450
+ "step": 55
451
+ },
452
+ {
453
+ "epoch": 0.512,
454
+ "grad_norm": 0.5596739037421498,
455
+ "learning_rate": 4.8203541925722016e-06,
456
+ "loss": 0.7119,
457
+ "num_tokens": 23490480.0,
458
+ "step": 56
459
+ },
460
+ {
461
+ "epoch": 0.5211428571428571,
462
+ "grad_norm": 0.569290949582533,
463
+ "learning_rate": 4.810897328076045e-06,
464
+ "loss": 0.6961,
465
+ "num_tokens": 23887492.0,
466
+ "step": 57
467
+ },
468
+ {
469
+ "epoch": 0.5302857142857142,
470
+ "grad_norm": 0.5267117373322459,
471
+ "learning_rate": 4.801207660846717e-06,
472
+ "loss": 0.6924,
473
+ "num_tokens": 24320449.0,
474
+ "step": 58
475
+ },
476
+ {
477
+ "epoch": 0.5394285714285715,
478
+ "grad_norm": 0.5083151481320303,
479
+ "learning_rate": 4.7912861670336065e-06,
480
+ "loss": 0.6953,
481
+ "num_tokens": 24769809.0,
482
+ "step": 59
483
+ },
484
+ {
485
+ "epoch": 0.5485714285714286,
486
+ "grad_norm": 0.5537578982564932,
487
+ "learning_rate": 4.781133846140606e-06,
488
+ "loss": 0.709,
489
+ "num_tokens": 25191175.0,
490
+ "step": 60
491
+ },
492
+ {
493
+ "epoch": 0.5577142857142857,
494
+ "grad_norm": 0.4943590155288578,
495
+ "learning_rate": 4.770751720925422e-06,
496
+ "loss": 0.7077,
497
+ "num_tokens": 25624365.0,
498
+ "step": 61
499
+ },
500
+ {
501
+ "epoch": 0.5668571428571428,
502
+ "grad_norm": 0.5160855203562402,
503
+ "learning_rate": 4.760140837296542e-06,
504
+ "loss": 0.7081,
505
+ "num_tokens": 26058172.0,
506
+ "step": 62
507
+ },
508
+ {
509
+ "epoch": 0.576,
510
+ "grad_norm": 0.5284271224337476,
511
+ "learning_rate": 4.7493022642078654e-06,
512
+ "loss": 0.7044,
513
+ "num_tokens": 26455012.0,
514
+ "step": 63
515
+ },
516
+ {
517
+ "epoch": 0.5851428571428572,
518
+ "grad_norm": 0.5202512411868518,
519
+ "learning_rate": 4.7382370935510165e-06,
520
+ "loss": 0.7196,
521
+ "num_tokens": 26892158.0,
522
+ "step": 64
523
+ },
524
+ {
525
+ "epoch": 0.5942857142857143,
526
+ "grad_norm": 0.5157697929801275,
527
+ "learning_rate": 4.726946440045348e-06,
528
+ "loss": 0.7046,
529
+ "num_tokens": 27320636.0,
530
+ "step": 65
531
+ },
532
+ {
533
+ "epoch": 0.6034285714285714,
534
+ "grad_norm": 0.5189217024488914,
535
+ "learning_rate": 4.715431441125639e-06,
536
+ "loss": 0.6627,
537
+ "num_tokens": 27766323.0,
538
+ "step": 66
539
+ },
540
+ {
541
+ "epoch": 0.6125714285714285,
542
+ "grad_norm": 0.5635204498629328,
543
+ "learning_rate": 4.703693256827515e-06,
544
+ "loss": 0.6931,
545
+ "num_tokens": 28189830.0,
546
+ "step": 67
547
+ },
548
+ {
549
+ "epoch": 0.6217142857142857,
550
+ "grad_norm": 0.5082211284375098,
551
+ "learning_rate": 4.691733069670575e-06,
552
+ "loss": 0.6451,
553
+ "num_tokens": 28627346.0,
554
+ "step": 68
555
+ },
556
+ {
557
+ "epoch": 0.6308571428571429,
558
+ "grad_norm": 0.5232606496406234,
559
+ "learning_rate": 4.679552084539271e-06,
560
+ "loss": 0.671,
561
+ "num_tokens": 29057945.0,
562
+ "step": 69
563
+ },
564
+ {
565
+ "epoch": 0.64,
566
+ "grad_norm": 0.53201837236867,
567
+ "learning_rate": 4.667151528561522e-06,
568
+ "loss": 0.7202,
569
+ "num_tokens": 29486194.0,
570
+ "step": 70
571
+ },
572
+ {
573
+ "epoch": 0.6491428571428571,
574
+ "grad_norm": 0.561020955033982,
575
+ "learning_rate": 4.6545326509850965e-06,
576
+ "loss": 0.7006,
577
+ "num_tokens": 29845300.0,
578
+ "step": 71
579
+ },
580
+ {
581
+ "epoch": 0.6582857142857143,
582
+ "grad_norm": 0.5297748591428174,
583
+ "learning_rate": 4.641696723051753e-06,
584
+ "loss": 0.7088,
585
+ "num_tokens": 30298906.0,
586
+ "step": 72
587
+ },
588
+ {
589
+ "epoch": 0.6674285714285715,
590
+ "grad_norm": 0.5129774250057094,
591
+ "learning_rate": 4.628645037869183e-06,
592
+ "loss": 0.6655,
593
+ "num_tokens": 30729078.0,
594
+ "step": 73
595
+ },
596
+ {
597
+ "epoch": 0.6765714285714286,
598
+ "grad_norm": 0.5488508086875596,
599
+ "learning_rate": 4.615378910280735e-06,
600
+ "loss": 0.6962,
601
+ "num_tokens": 31142347.0,
602
+ "step": 74
603
+ },
604
+ {
605
+ "epoch": 0.6857142857142857,
606
+ "grad_norm": 0.5214375076220712,
607
+ "learning_rate": 4.60189967673296e-06,
608
+ "loss": 0.6992,
609
+ "num_tokens": 31530611.0,
610
+ "step": 75
611
+ },
612
+ {
613
+ "epoch": 0.6948571428571428,
614
+ "grad_norm": 0.5365497011388887,
615
+ "learning_rate": 4.588208695140972e-06,
616
+ "loss": 0.6856,
617
+ "num_tokens": 31934290.0,
618
+ "step": 76
619
+ },
620
+ {
621
+ "epoch": 0.704,
622
+ "grad_norm": 0.5239414066377821,
623
+ "learning_rate": 4.574307344751654e-06,
624
+ "loss": 0.6689,
625
+ "num_tokens": 32336516.0,
626
+ "step": 77
627
+ },
628
+ {
629
+ "epoch": 0.7131428571428572,
630
+ "grad_norm": 0.4905474692474024,
631
+ "learning_rate": 4.560197026004706e-06,
632
+ "loss": 0.6616,
633
+ "num_tokens": 32754867.0,
634
+ "step": 78
635
+ },
636
+ {
637
+ "epoch": 0.7222857142857143,
638
+ "grad_norm": 0.527006404732485,
639
+ "learning_rate": 4.5458791603915695e-06,
640
+ "loss": 0.672,
641
+ "num_tokens": 33177777.0,
642
+ "step": 79
643
+ },
644
+ {
645
+ "epoch": 0.7314285714285714,
646
+ "grad_norm": 0.49102371409141427,
647
+ "learning_rate": 4.5313551903122195e-06,
648
+ "loss": 0.6428,
649
+ "num_tokens": 33595281.0,
650
+ "step": 80
651
+ },
652
+ {
653
+ "epoch": 0.7405714285714285,
654
+ "grad_norm": 0.5266302281242587,
655
+ "learning_rate": 4.516626578929857e-06,
656
+ "loss": 0.685,
657
+ "num_tokens": 34010874.0,
658
+ "step": 81
659
+ },
660
+ {
661
+ "epoch": 0.7497142857142857,
662
+ "grad_norm": 0.5219018971926723,
663
+ "learning_rate": 4.501694810023506e-06,
664
+ "loss": 0.7053,
665
+ "num_tokens": 34452852.0,
666
+ "step": 82
667
+ },
668
+ {
669
+ "epoch": 0.7588571428571429,
670
+ "grad_norm": 0.5339612937638695,
671
+ "learning_rate": 4.486561387838539e-06,
672
+ "loss": 0.6656,
673
+ "num_tokens": 34850322.0,
674
+ "step": 83
675
+ },
676
+ {
677
+ "epoch": 0.768,
678
+ "grad_norm": 0.557261181662059,
679
+ "learning_rate": 4.471227836935139e-06,
680
+ "loss": 0.698,
681
+ "num_tokens": 35255541.0,
682
+ "step": 84
683
+ },
684
+ {
685
+ "epoch": 0.7771428571428571,
686
+ "grad_norm": 0.5282377710472309,
687
+ "learning_rate": 4.455695702034705e-06,
688
+ "loss": 0.6832,
689
+ "num_tokens": 35646651.0,
690
+ "step": 85
691
+ },
692
+ {
693
+ "epoch": 0.7862857142857143,
694
+ "grad_norm": 0.5054707178540805,
695
+ "learning_rate": 4.439966547864243e-06,
696
+ "loss": 0.6559,
697
+ "num_tokens": 36068819.0,
698
+ "step": 86
699
+ },
700
+ {
701
+ "epoch": 0.7954285714285714,
702
+ "grad_norm": 0.5150927571466014,
703
+ "learning_rate": 4.424041958998732e-06,
704
+ "loss": 0.6795,
705
+ "num_tokens": 36494246.0,
706
+ "step": 87
707
+ },
708
+ {
709
+ "epoch": 0.8045714285714286,
710
+ "grad_norm": 0.5151785920486077,
711
+ "learning_rate": 4.407923539701486e-06,
712
+ "loss": 0.7082,
713
+ "num_tokens": 36935755.0,
714
+ "step": 88
715
+ },
716
+ {
717
+ "epoch": 0.8137142857142857,
718
+ "grad_norm": 0.5219798416078772,
719
+ "learning_rate": 4.391612913762549e-06,
720
+ "loss": 0.6592,
721
+ "num_tokens": 37366636.0,
722
+ "step": 89
723
+ },
724
+ {
725
+ "epoch": 0.8228571428571428,
726
+ "grad_norm": 0.4814532946235625,
727
+ "learning_rate": 4.375111724335102e-06,
728
+ "loss": 0.6282,
729
+ "num_tokens": 37765456.0,
730
+ "step": 90
731
+ },
732
+ {
733
+ "epoch": 0.832,
734
+ "grad_norm": 0.5416412082011206,
735
+ "learning_rate": 4.358421633769934e-06,
736
+ "loss": 0.6744,
737
+ "num_tokens": 38150281.0,
738
+ "step": 91
739
+ },
740
+ {
741
+ "epoch": 0.8411428571428572,
742
+ "grad_norm": 0.48068802364165214,
743
+ "learning_rate": 4.341544323447978e-06,
744
+ "loss": 0.6873,
745
+ "num_tokens": 38679689.0,
746
+ "step": 92
747
+ },
748
+ {
749
+ "epoch": 0.8502857142857143,
750
+ "grad_norm": 0.4918360073106731,
751
+ "learning_rate": 4.324481493610919e-06,
752
+ "loss": 0.6935,
753
+ "num_tokens": 39124128.0,
754
+ "step": 93
755
+ },
756
+ {
757
+ "epoch": 0.8594285714285714,
758
+ "grad_norm": 0.5218436245838689,
759
+ "learning_rate": 4.307234863189917e-06,
760
+ "loss": 0.6905,
761
+ "num_tokens": 39548028.0,
762
+ "step": 94
763
+ },
764
+ {
765
+ "epoch": 0.8685714285714285,
766
+ "grad_norm": 0.5335931444817835,
767
+ "learning_rate": 4.289806169632434e-06,
768
+ "loss": 0.7121,
769
+ "num_tokens": 39948722.0,
770
+ "step": 95
771
+ },
772
+ {
773
+ "epoch": 0.8777142857142857,
774
+ "grad_norm": 0.5136306733831099,
775
+ "learning_rate": 4.272197168727204e-06,
776
+ "loss": 0.6711,
777
+ "num_tokens": 40371033.0,
778
+ "step": 96
779
+ },
780
+ {
781
+ "epoch": 0.8868571428571429,
782
+ "grad_norm": 0.5071570494757102,
783
+ "learning_rate": 4.254409634427356e-06,
784
+ "loss": 0.6654,
785
+ "num_tokens": 40782038.0,
786
+ "step": 97
787
+ },
788
+ {
789
+ "epoch": 0.896,
790
+ "grad_norm": 0.49868261307658696,
791
+ "learning_rate": 4.236445358671696e-06,
792
+ "loss": 0.668,
793
+ "num_tokens": 41221994.0,
794
+ "step": 98
795
+ },
796
+ {
797
+ "epoch": 0.9051428571428571,
798
+ "grad_norm": 0.4999015555327391,
799
+ "learning_rate": 4.218306151204188e-06,
800
+ "loss": 0.6829,
801
+ "num_tokens": 41655227.0,
802
+ "step": 99
803
+ },
804
+ {
805
+ "epoch": 0.9142857142857143,
806
+ "grad_norm": 0.5267277450463913,
807
+ "learning_rate": 4.1999938393916424e-06,
808
+ "loss": 0.6966,
809
+ "num_tokens": 42086636.0,
810
+ "step": 100
811
+ },
812
+ {
813
+ "epoch": 0.9234285714285714,
814
+ "grad_norm": 0.5098818224161321,
815
+ "learning_rate": 4.18151026803962e-06,
816
+ "loss": 0.7018,
817
+ "num_tokens": 42524682.0,
818
+ "step": 101
819
+ },
820
+ {
821
+ "epoch": 0.9325714285714286,
822
+ "grad_norm": 0.5472107304446481,
823
+ "learning_rate": 4.162857299206584e-06,
824
+ "loss": 0.695,
825
+ "num_tokens": 42919957.0,
826
+ "step": 102
827
+ },
828
+ {
829
+ "epoch": 0.9417142857142857,
830
+ "grad_norm": 0.5193667055229434,
831
+ "learning_rate": 4.144036812016317e-06,
832
+ "loss": 0.6772,
833
+ "num_tokens": 43334031.0,
834
+ "step": 103
835
+ },
836
+ {
837
+ "epoch": 0.9508571428571428,
838
+ "grad_norm": 0.5769899431492905,
839
+ "learning_rate": 4.1250507024686115e-06,
840
+ "loss": 0.6943,
841
+ "num_tokens": 43779138.0,
842
+ "step": 104
843
+ },
844
+ {
845
+ "epoch": 0.96,
846
+ "grad_norm": 0.49582865560110145,
847
+ "learning_rate": 4.105900883248269e-06,
848
+ "loss": 0.6589,
849
+ "num_tokens": 44181409.0,
850
+ "step": 105
851
+ },
852
+ {
853
+ "epoch": 0.9691428571428572,
854
+ "grad_norm": 0.5560209310215001,
855
+ "learning_rate": 4.08658928353241e-06,
856
+ "loss": 0.6683,
857
+ "num_tokens": 44565057.0,
858
+ "step": 106
859
+ },
860
+ {
861
+ "epoch": 0.9782857142857143,
862
+ "grad_norm": 0.5105250336516403,
863
+ "learning_rate": 4.06711784879613e-06,
864
+ "loss": 0.6656,
865
+ "num_tokens": 44990460.0,
866
+ "step": 107
867
+ },
868
+ {
869
+ "epoch": 0.9874285714285714,
870
+ "grad_norm": 0.47822137614162397,
871
+ "learning_rate": 4.047488540616503e-06,
872
+ "loss": 0.6905,
873
+ "num_tokens": 45448868.0,
874
+ "step": 108
875
+ },
876
+ {
877
+ "epoch": 0.9965714285714286,
878
+ "grad_norm": 0.5267943756779967,
879
+ "learning_rate": 4.027703336474979e-06,
880
+ "loss": 0.6913,
881
+ "num_tokens": 45865085.0,
882
+ "step": 109
883
+ },
884
+ {
885
+ "epoch": 1.0,
886
+ "grad_norm": 0.7513864322987849,
887
+ "learning_rate": 4.0077642295581605e-06,
888
+ "loss": 0.6751,
889
+ "num_tokens": 46043993.0,
890
+ "step": 110
891
+ },
892
+ {
893
+ "epoch": 1.0091428571428571,
894
+ "grad_norm": 0.652397229541187,
895
+ "learning_rate": 3.987673228557017e-06,
896
+ "loss": 0.6124,
897
+ "num_tokens": 46444743.0,
898
+ "step": 111
899
+ },
900
+ {
901
+ "epoch": 1.0182857142857142,
902
+ "grad_norm": 0.5613822445181739,
903
+ "learning_rate": 3.967432357464518e-06,
904
+ "loss": 0.6334,
905
+ "num_tokens": 46868932.0,
906
+ "step": 112
907
+ },
908
+ {
909
+ "epoch": 1.0274285714285714,
910
+ "grad_norm": 0.548463499167073,
911
+ "learning_rate": 3.947043655371734e-06,
912
+ "loss": 0.637,
913
+ "num_tokens": 47306605.0,
914
+ "step": 113
915
+ },
916
+ {
917
+ "epoch": 1.0365714285714285,
918
+ "grad_norm": 0.5985099049112745,
919
+ "learning_rate": 3.9265091762624225e-06,
920
+ "loss": 0.6684,
921
+ "num_tokens": 47766810.0,
922
+ "step": 114
923
+ },
924
+ {
925
+ "epoch": 1.0457142857142858,
926
+ "grad_norm": 0.5614950162690504,
927
+ "learning_rate": 3.905830988806101e-06,
928
+ "loss": 0.6386,
929
+ "num_tokens": 48217403.0,
930
+ "step": 115
931
+ },
932
+ {
933
+ "epoch": 1.054857142857143,
934
+ "grad_norm": 0.5636791310211307,
935
+ "learning_rate": 3.885011176149647e-06,
936
+ "loss": 0.6403,
937
+ "num_tokens": 48667599.0,
938
+ "step": 116
939
+ },
940
+ {
941
+ "epoch": 1.064,
942
+ "grad_norm": 0.5447491560984974,
943
+ "learning_rate": 3.864051835707444e-06,
944
+ "loss": 0.6637,
945
+ "num_tokens": 49116575.0,
946
+ "step": 117
947
+ },
948
+ {
949
+ "epoch": 1.0731428571428572,
950
+ "grad_norm": 0.564065307250827,
951
+ "learning_rate": 3.842955078950079e-06,
952
+ "loss": 0.6563,
953
+ "num_tokens": 49548979.0,
954
+ "step": 118
955
+ },
956
+ {
957
+ "epoch": 1.0822857142857143,
958
+ "grad_norm": 0.5750693750810204,
959
+ "learning_rate": 3.8217230311916365e-06,
960
+ "loss": 0.6542,
961
+ "num_tokens": 49944685.0,
962
+ "step": 119
963
+ },
964
+ {
965
+ "epoch": 1.0914285714285714,
966
+ "grad_norm": 0.5664157697505491,
967
+ "learning_rate": 3.800357831375583e-06,
968
+ "loss": 0.6311,
969
+ "num_tokens": 50369856.0,
970
+ "step": 120
971
+ },
972
+ {
973
+ "epoch": 1.1005714285714285,
974
+ "grad_norm": 0.5643319728604673,
975
+ "learning_rate": 3.778861631859298e-06,
976
+ "loss": 0.635,
977
+ "num_tokens": 50756699.0,
978
+ "step": 121
979
+ },
980
+ {
981
+ "epoch": 1.1097142857142857,
982
+ "grad_norm": 0.5490242895971412,
983
+ "learning_rate": 3.7572365981972335e-06,
984
+ "loss": 0.6504,
985
+ "num_tokens": 51212014.0,
986
+ "step": 122
987
+ },
988
+ {
989
+ "epoch": 1.1188571428571428,
990
+ "grad_norm": 0.5852924645249652,
991
+ "learning_rate": 3.735484908922759e-06,
992
+ "loss": 0.6337,
993
+ "num_tokens": 51613256.0,
994
+ "step": 123
995
+ },
996
+ {
997
+ "epoch": 1.1280000000000001,
998
+ "grad_norm": 0.524011985834964,
999
+ "learning_rate": 3.7136087553286916e-06,
1000
+ "loss": 0.6244,
1001
+ "num_tokens": 52060195.0,
1002
+ "step": 124
1003
+ },
1004
+ {
1005
+ "epoch": 1.1371428571428572,
1006
+ "grad_norm": 0.5418140690754942,
1007
+ "learning_rate": 3.6916103412465405e-06,
1008
+ "loss": 0.6335,
1009
+ "num_tokens": 52475517.0,
1010
+ "step": 125
1011
+ },
1012
+ {
1013
+ "epoch": 1.1462857142857144,
1014
+ "grad_norm": 0.5431784069939521,
1015
+ "learning_rate": 3.6694918828244923e-06,
1016
+ "loss": 0.6151,
1017
+ "num_tokens": 52916813.0,
1018
+ "step": 126
1019
+ },
1020
+ {
1021
+ "epoch": 1.1554285714285715,
1022
+ "grad_norm": 0.5331182901674993,
1023
+ "learning_rate": 3.647255608304154e-06,
1024
+ "loss": 0.5944,
1025
+ "num_tokens": 53329446.0,
1026
+ "step": 127
1027
+ },
1028
+ {
1029
+ "epoch": 1.1645714285714286,
1030
+ "grad_norm": 0.5669880957159196,
1031
+ "learning_rate": 3.6249037577960744e-06,
1032
+ "loss": 0.6548,
1033
+ "num_tokens": 53744113.0,
1034
+ "step": 128
1035
+ },
1036
+ {
1037
+ "epoch": 1.1737142857142857,
1038
+ "grad_norm": 0.5640955386477013,
1039
+ "learning_rate": 3.6024385830540758e-06,
1040
+ "loss": 0.6232,
1041
+ "num_tokens": 54171017.0,
1042
+ "step": 129
1043
+ },
1044
+ {
1045
+ "epoch": 1.1828571428571428,
1046
+ "grad_norm": 0.566123338215568,
1047
+ "learning_rate": 3.5798623472484074e-06,
1048
+ "loss": 0.622,
1049
+ "num_tokens": 54595667.0,
1050
+ "step": 130
1051
+ },
1052
+ {
1053
+ "epoch": 1.192,
1054
+ "grad_norm": 0.5164284224002408,
1055
+ "learning_rate": 3.5571773247377495e-06,
1056
+ "loss": 0.6247,
1057
+ "num_tokens": 55038242.0,
1058
+ "step": 131
1059
+ },
1060
+ {
1061
+ "epoch": 1.201142857142857,
1062
+ "grad_norm": 0.5193063226224068,
1063
+ "learning_rate": 3.5343858008400955e-06,
1064
+ "loss": 0.6133,
1065
+ "num_tokens": 55441117.0,
1066
+ "step": 132
1067
+ },
1068
+ {
1069
+ "epoch": 1.2102857142857144,
1070
+ "grad_norm": 0.5594859010728502,
1071
+ "learning_rate": 3.511490071602523e-06,
1072
+ "loss": 0.5845,
1073
+ "num_tokens": 55852545.0,
1074
+ "step": 133
1075
+ },
1076
+ {
1077
+ "epoch": 1.2194285714285713,
1078
+ "grad_norm": 0.5312154621480816,
1079
+ "learning_rate": 3.4884924435698875e-06,
1080
+ "loss": 0.6139,
1081
+ "num_tokens": 56305302.0,
1082
+ "step": 134
1083
+ },
1084
+ {
1085
+ "epoch": 1.2285714285714286,
1086
+ "grad_norm": 0.5082891383546045,
1087
+ "learning_rate": 3.465395233552458e-06,
1088
+ "loss": 0.6162,
1089
+ "num_tokens": 56746085.0,
1090
+ "step": 135
1091
+ },
1092
+ {
1093
+ "epoch": 1.2377142857142858,
1094
+ "grad_norm": 0.5183563749809662,
1095
+ "learning_rate": 3.4422007683925224e-06,
1096
+ "loss": 0.5981,
1097
+ "num_tokens": 57164232.0,
1098
+ "step": 136
1099
+ },
1100
+ {
1101
+ "epoch": 1.2468571428571429,
1102
+ "grad_norm": 0.5424921739894077,
1103
+ "learning_rate": 3.418911384729971e-06,
1104
+ "loss": 0.6318,
1105
+ "num_tokens": 57569040.0,
1106
+ "step": 137
1107
+ },
1108
+ {
1109
+ "epoch": 1.256,
1110
+ "grad_norm": 0.5176334342259454,
1111
+ "learning_rate": 3.395529428766907e-06,
1112
+ "loss": 0.6473,
1113
+ "num_tokens": 58021968.0,
1114
+ "step": 138
1115
+ },
1116
+ {
1117
+ "epoch": 1.2651428571428571,
1118
+ "grad_norm": 0.5084583167785991,
1119
+ "learning_rate": 3.3720572560312854e-06,
1120
+ "loss": 0.6046,
1121
+ "num_tokens": 58462943.0,
1122
+ "step": 139
1123
+ },
1124
+ {
1125
+ "epoch": 1.2742857142857142,
1126
+ "grad_norm": 0.5103522984652497,
1127
+ "learning_rate": 3.3484972311396114e-06,
1128
+ "loss": 0.5896,
1129
+ "num_tokens": 58899697.0,
1130
+ "step": 140
1131
+ },
1132
+ {
1133
+ "epoch": 1.2834285714285714,
1134
+ "grad_norm": 0.5357080439117383,
1135
+ "learning_rate": 3.3248517275587292e-06,
1136
+ "loss": 0.6151,
1137
+ "num_tokens": 59317087.0,
1138
+ "step": 141
1139
+ },
1140
+ {
1141
+ "epoch": 1.2925714285714287,
1142
+ "grad_norm": 0.5266818795859725,
1143
+ "learning_rate": 3.3011231273667155e-06,
1144
+ "loss": 0.6402,
1145
+ "num_tokens": 59740685.0,
1146
+ "step": 142
1147
+ },
1148
+ {
1149
+ "epoch": 1.3017142857142856,
1150
+ "grad_norm": 0.5515879967156198,
1151
+ "learning_rate": 3.2773138210129037e-06,
1152
+ "loss": 0.6256,
1153
+ "num_tokens": 60175007.0,
1154
+ "step": 143
1155
+ },
1156
+ {
1157
+ "epoch": 1.310857142857143,
1158
+ "grad_norm": 0.5231964139544342,
1159
+ "learning_rate": 3.253426207077069e-06,
1160
+ "loss": 0.6185,
1161
+ "num_tokens": 60569710.0,
1162
+ "step": 144
1163
+ },
1164
+ {
1165
+ "epoch": 1.32,
1166
+ "grad_norm": 0.5394300392957713,
1167
+ "learning_rate": 3.2294626920277928e-06,
1168
+ "loss": 0.6372,
1169
+ "num_tokens": 60995749.0,
1170
+ "step": 145
1171
+ },
1172
+ {
1173
+ "epoch": 1.3291428571428572,
1174
+ "grad_norm": 0.5288477560850162,
1175
+ "learning_rate": 3.20542568998003e-06,
1176
+ "loss": 0.6168,
1177
+ "num_tokens": 61416757.0,
1178
+ "step": 146
1179
+ },
1180
+ {
1181
+ "epoch": 1.3382857142857143,
1182
+ "grad_norm": 0.5412372637528483,
1183
+ "learning_rate": 3.181317622451909e-06,
1184
+ "loss": 0.621,
1185
+ "num_tokens": 61838293.0,
1186
+ "step": 147
1187
+ },
1188
+ {
1189
+ "epoch": 1.3474285714285714,
1190
+ "grad_norm": 0.5408790490021942,
1191
+ "learning_rate": 3.1571409181207867e-06,
1192
+ "loss": 0.6284,
1193
+ "num_tokens": 62266608.0,
1194
+ "step": 148
1195
+ },
1196
+ {
1197
+ "epoch": 1.3565714285714285,
1198
+ "grad_norm": 0.5449668003305271,
1199
+ "learning_rate": 3.132898012578577e-06,
1200
+ "loss": 0.6086,
1201
+ "num_tokens": 62661670.0,
1202
+ "step": 149
1203
+ },
1204
+ {
1205
+ "epoch": 1.3657142857142857,
1206
+ "grad_norm": 0.49032514112728875,
1207
+ "learning_rate": 3.108591348086388e-06,
1208
+ "loss": 0.626,
1209
+ "num_tokens": 63105118.0,
1210
+ "step": 150
1211
+ },
1212
+ {
1213
+ "epoch": 1.3748571428571428,
1214
+ "grad_norm": 0.532715786721113,
1215
+ "learning_rate": 3.0842233733284866e-06,
1216
+ "loss": 0.6034,
1217
+ "num_tokens": 63547019.0,
1218
+ "step": 151
1219
+ },
1220
+ {
1221
+ "epoch": 1.384,
1222
+ "grad_norm": 0.5606001997788402,
1223
+ "learning_rate": 3.0597965431656125e-06,
1224
+ "loss": 0.6008,
1225
+ "num_tokens": 63969387.0,
1226
+ "step": 152
1227
+ },
1228
+ {
1229
+ "epoch": 1.3931428571428572,
1230
+ "grad_norm": 0.5496057628803153,
1231
+ "learning_rate": 3.0353133183876745e-06,
1232
+ "loss": 0.627,
1233
+ "num_tokens": 64374671.0,
1234
+ "step": 153
1235
+ },
1236
+ {
1237
+ "epoch": 1.4022857142857144,
1238
+ "grad_norm": 0.5524369124857681,
1239
+ "learning_rate": 3.0107761654658464e-06,
1240
+ "loss": 0.605,
1241
+ "num_tokens": 64756768.0,
1242
+ "step": 154
1243
+ },
1244
+ {
1245
+ "epoch": 1.4114285714285715,
1246
+ "grad_norm": 0.5533113651256814,
1247
+ "learning_rate": 2.986187556304091e-06,
1248
+ "loss": 0.6181,
1249
+ "num_tokens": 65142352.0,
1250
+ "step": 155
1251
+ },
1252
+ {
1253
+ "epoch": 1.4205714285714286,
1254
+ "grad_norm": 0.5394567163244798,
1255
+ "learning_rate": 2.961549967990139e-06,
1256
+ "loss": 0.6582,
1257
+ "num_tokens": 65566229.0,
1258
+ "step": 156
1259
+ },
1260
+ {
1261
+ "epoch": 1.4297142857142857,
1262
+ "grad_norm": 0.5320474412403765,
1263
+ "learning_rate": 2.9368658825459452e-06,
1264
+ "loss": 0.6387,
1265
+ "num_tokens": 66047263.0,
1266
+ "step": 157
1267
+ },
1268
+ {
1269
+ "epoch": 1.4388571428571428,
1270
+ "grad_norm": 0.498957441050946,
1271
+ "learning_rate": 2.912137786677639e-06,
1272
+ "loss": 0.6336,
1273
+ "num_tokens": 66501887.0,
1274
+ "step": 158
1275
+ },
1276
+ {
1277
+ "epoch": 1.448,
1278
+ "grad_norm": 0.5480701615542537,
1279
+ "learning_rate": 2.8873681715250197e-06,
1280
+ "loss": 0.6382,
1281
+ "num_tokens": 66899885.0,
1282
+ "step": 159
1283
+ },
1284
+ {
1285
+ "epoch": 1.457142857142857,
1286
+ "grad_norm": 0.5270413445410719,
1287
+ "learning_rate": 2.8625595324105925e-06,
1288
+ "loss": 0.5933,
1289
+ "num_tokens": 67307708.0,
1290
+ "step": 160
1291
+ },
1292
+ {
1293
+ "epoch": 1.4662857142857142,
1294
+ "grad_norm": 0.5087274802990532,
1295
+ "learning_rate": 2.8377143685881835e-06,
1296
+ "loss": 0.5981,
1297
+ "num_tokens": 67732755.0,
1298
+ "step": 161
1299
+ },
1300
+ {
1301
+ "epoch": 1.4754285714285715,
1302
+ "grad_norm": 0.5584833225495552,
1303
+ "learning_rate": 2.812835182991166e-06,
1304
+ "loss": 0.6151,
1305
+ "num_tokens": 68109847.0,
1306
+ "step": 162
1307
+ },
1308
+ {
1309
+ "epoch": 1.4845714285714287,
1310
+ "grad_norm": 0.5337038825179844,
1311
+ "learning_rate": 2.7879244819803104e-06,
1312
+ "loss": 0.5916,
1313
+ "num_tokens": 68557231.0,
1314
+ "step": 163
1315
+ },
1316
+ {
1317
+ "epoch": 1.4937142857142858,
1318
+ "grad_norm": 0.5046455371902981,
1319
+ "learning_rate": 2.7629847750912885e-06,
1320
+ "loss": 0.6266,
1321
+ "num_tokens": 68974066.0,
1322
+ "step": 164
1323
+ },
1324
+ {
1325
+ "epoch": 1.502857142857143,
1326
+ "grad_norm": 0.5388161616170928,
1327
+ "learning_rate": 2.7380185747818628e-06,
1328
+ "loss": 0.6317,
1329
+ "num_tokens": 69374302.0,
1330
+ "step": 165
1331
+ },
1332
+ {
1333
+ "epoch": 1.512,
1334
+ "grad_norm": 0.5230970281548867,
1335
+ "learning_rate": 2.713028396178776e-06,
1336
+ "loss": 0.6587,
1337
+ "num_tokens": 69819837.0,
1338
+ "step": 166
1339
+ },
1340
+ {
1341
+ "epoch": 1.5211428571428571,
1342
+ "grad_norm": 0.526880337190175,
1343
+ "learning_rate": 2.6880167568243716e-06,
1344
+ "loss": 0.5943,
1345
+ "num_tokens": 70216440.0,
1346
+ "step": 167
1347
+ },
1348
+ {
1349
+ "epoch": 1.5302857142857142,
1350
+ "grad_norm": 0.5485816175958096,
1351
+ "learning_rate": 2.6629861764229824e-06,
1352
+ "loss": 0.6055,
1353
+ "num_tokens": 70624223.0,
1354
+ "step": 168
1355
+ },
1356
+ {
1357
+ "epoch": 1.5394285714285716,
1358
+ "grad_norm": 0.5305674288577678,
1359
+ "learning_rate": 2.6379391765870828e-06,
1360
+ "loss": 0.61,
1361
+ "num_tokens": 71020172.0,
1362
+ "step": 169
1363
+ },
1364
+ {
1365
+ "epoch": 1.5485714285714285,
1366
+ "grad_norm": 0.5500147924060435,
1367
+ "learning_rate": 2.6128782805832605e-06,
1368
+ "loss": 0.6316,
1369
+ "num_tokens": 71443243.0,
1370
+ "step": 170
1371
+ },
1372
+ {
1373
+ "epoch": 1.5577142857142858,
1374
+ "grad_norm": 0.545744633264797,
1375
+ "learning_rate": 2.5878060130780225e-06,
1376
+ "loss": 0.6343,
1377
+ "num_tokens": 71842978.0,
1378
+ "step": 171
1379
+ },
1380
+ {
1381
+ "epoch": 1.5668571428571427,
1382
+ "grad_norm": 0.5333068371067002,
1383
+ "learning_rate": 2.562724899883458e-06,
1384
+ "loss": 0.5962,
1385
+ "num_tokens": 72246613.0,
1386
+ "step": 172
1387
+ },
1388
+ {
1389
+ "epoch": 1.576,
1390
+ "grad_norm": 0.5151113808836872,
1391
+ "learning_rate": 2.537637467702777e-06,
1392
+ "loss": 0.5942,
1393
+ "num_tokens": 72635238.0,
1394
+ "step": 173
1395
+ },
1396
+ {
1397
+ "epoch": 1.5851428571428572,
1398
+ "grad_norm": 0.5097827368822562,
1399
+ "learning_rate": 2.512546243875776e-06,
1400
+ "loss": 0.6452,
1401
+ "num_tokens": 73066900.0,
1402
+ "step": 174
1403
+ },
1404
+ {
1405
+ "epoch": 1.5942857142857143,
1406
+ "grad_norm": 0.5050837954931957,
1407
+ "learning_rate": 2.4874537561242253e-06,
1408
+ "loss": 0.5983,
1409
+ "num_tokens": 73459425.0,
1410
+ "step": 175
1411
+ },
1412
+ {
1413
+ "epoch": 1.6034285714285714,
1414
+ "grad_norm": 0.5386528093096086,
1415
+ "learning_rate": 2.462362532297224e-06,
1416
+ "loss": 0.6212,
1417
+ "num_tokens": 73846769.0,
1418
+ "step": 176
1419
+ },
1420
+ {
1421
+ "epoch": 1.6125714285714285,
1422
+ "grad_norm": 0.5208969637241072,
1423
+ "learning_rate": 2.4372751001165427e-06,
1424
+ "loss": 0.5953,
1425
+ "num_tokens": 74238603.0,
1426
+ "step": 177
1427
+ },
1428
+ {
1429
+ "epoch": 1.6217142857142857,
1430
+ "grad_norm": 0.5300750981583515,
1431
+ "learning_rate": 2.4121939869219784e-06,
1432
+ "loss": 0.6385,
1433
+ "num_tokens": 74619800.0,
1434
+ "step": 178
1435
+ },
1436
+ {
1437
+ "epoch": 1.6308571428571428,
1438
+ "grad_norm": 0.4833782673351415,
1439
+ "learning_rate": 2.3871217194167407e-06,
1440
+ "loss": 0.6203,
1441
+ "num_tokens": 75068223.0,
1442
+ "step": 179
1443
+ },
1444
+ {
1445
+ "epoch": 1.6400000000000001,
1446
+ "grad_norm": 0.4940975179707354,
1447
+ "learning_rate": 2.362060823412919e-06,
1448
+ "loss": 0.6251,
1449
+ "num_tokens": 75515755.0,
1450
+ "step": 180
1451
+ },
1452
+ {
1453
+ "epoch": 1.649142857142857,
1454
+ "grad_norm": 0.4884850267837385,
1455
+ "learning_rate": 2.3370138235770184e-06,
1456
+ "loss": 0.5753,
1457
+ "num_tokens": 75968696.0,
1458
+ "step": 181
1459
+ },
1460
+ {
1461
+ "epoch": 1.6582857142857144,
1462
+ "grad_norm": 0.5130965951519948,
1463
+ "learning_rate": 2.3119832431756284e-06,
1464
+ "loss": 0.6274,
1465
+ "num_tokens": 76374172.0,
1466
+ "step": 182
1467
+ },
1468
+ {
1469
+ "epoch": 1.6674285714285715,
1470
+ "grad_norm": 0.5311768193897066,
1471
+ "learning_rate": 2.286971603821226e-06,
1472
+ "loss": 0.5945,
1473
+ "num_tokens": 76766397.0,
1474
+ "step": 183
1475
+ },
1476
+ {
1477
+ "epoch": 1.6765714285714286,
1478
+ "grad_norm": 0.4881821303904307,
1479
+ "learning_rate": 2.261981425218138e-06,
1480
+ "loss": 0.5932,
1481
+ "num_tokens": 77197026.0,
1482
+ "step": 184
1483
+ },
1484
+ {
1485
+ "epoch": 1.6857142857142857,
1486
+ "grad_norm": 0.47122072556306027,
1487
+ "learning_rate": 2.2370152249087114e-06,
1488
+ "loss": 0.58,
1489
+ "num_tokens": 77665939.0,
1490
+ "step": 185
1491
+ },
1492
+ {
1493
+ "epoch": 1.6948571428571428,
1494
+ "grad_norm": 0.5385304392622484,
1495
+ "learning_rate": 2.2120755180196904e-06,
1496
+ "loss": 0.6206,
1497
+ "num_tokens": 78106107.0,
1498
+ "step": 186
1499
+ },
1500
+ {
1501
+ "epoch": 1.704,
1502
+ "grad_norm": 0.49447572000428314,
1503
+ "learning_rate": 2.1871648170088347e-06,
1504
+ "loss": 0.5907,
1505
+ "num_tokens": 78538377.0,
1506
+ "step": 187
1507
+ },
1508
+ {
1509
+ "epoch": 1.713142857142857,
1510
+ "grad_norm": 0.5244933755348707,
1511
+ "learning_rate": 2.1622856314118178e-06,
1512
+ "loss": 0.5959,
1513
+ "num_tokens": 78944694.0,
1514
+ "step": 188
1515
+ },
1516
+ {
1517
+ "epoch": 1.7222857142857144,
1518
+ "grad_norm": 0.5301458412434723,
1519
+ "learning_rate": 2.1374404675894083e-06,
1520
+ "loss": 0.6361,
1521
+ "num_tokens": 79395440.0,
1522
+ "step": 189
1523
+ },
1524
+ {
1525
+ "epoch": 1.7314285714285713,
1526
+ "grad_norm": 0.5202435914893955,
1527
+ "learning_rate": 2.1126318284749807e-06,
1528
+ "loss": 0.6127,
1529
+ "num_tokens": 79822802.0,
1530
+ "step": 190
1531
+ },
1532
+ {
1533
+ "epoch": 1.7405714285714287,
1534
+ "grad_norm": 0.48495792096652884,
1535
+ "learning_rate": 2.087862213322362e-06,
1536
+ "loss": 0.6216,
1537
+ "num_tokens": 80251827.0,
1538
+ "step": 191
1539
+ },
1540
+ {
1541
+ "epoch": 1.7497142857142856,
1542
+ "grad_norm": 0.5039270578694471,
1543
+ "learning_rate": 2.063134117454055e-06,
1544
+ "loss": 0.6238,
1545
+ "num_tokens": 80682166.0,
1546
+ "step": 192
1547
+ },
1548
+ {
1549
+ "epoch": 1.758857142857143,
1550
+ "grad_norm": 0.5606686536962094,
1551
+ "learning_rate": 2.0384500320098604e-06,
1552
+ "loss": 0.6327,
1553
+ "num_tokens": 81072109.0,
1554
+ "step": 193
1555
+ },
1556
+ {
1557
+ "epoch": 1.768,
1558
+ "grad_norm": 0.5154032810828468,
1559
+ "learning_rate": 2.01381244369591e-06,
1560
+ "loss": 0.5878,
1561
+ "num_tokens": 81463643.0,
1562
+ "step": 194
1563
+ },
1564
+ {
1565
+ "epoch": 1.7771428571428571,
1566
+ "grad_norm": 0.5372934038703727,
1567
+ "learning_rate": 1.9892238345341544e-06,
1568
+ "loss": 0.6254,
1569
+ "num_tokens": 81900194.0,
1570
+ "step": 195
1571
+ },
1572
+ {
1573
+ "epoch": 1.7862857142857143,
1574
+ "grad_norm": 0.5372941594212604,
1575
+ "learning_rate": 1.964686681612327e-06,
1576
+ "loss": 0.6012,
1577
+ "num_tokens": 82259830.0,
1578
+ "step": 196
1579
+ },
1580
+ {
1581
+ "epoch": 1.7954285714285714,
1582
+ "grad_norm": 0.5074393400323167,
1583
+ "learning_rate": 1.9402034568343888e-06,
1584
+ "loss": 0.5949,
1585
+ "num_tokens": 82667552.0,
1586
+ "step": 197
1587
+ },
1588
+ {
1589
+ "epoch": 1.8045714285714287,
1590
+ "grad_norm": 0.5361364809103955,
1591
+ "learning_rate": 1.9157766266715142e-06,
1592
+ "loss": 0.6128,
1593
+ "num_tokens": 83029946.0,
1594
+ "step": 198
1595
+ },
1596
+ {
1597
+ "epoch": 1.8137142857142856,
1598
+ "grad_norm": 0.5028599124924883,
1599
+ "learning_rate": 1.8914086519136133e-06,
1600
+ "loss": 0.6024,
1601
+ "num_tokens": 83437794.0,
1602
+ "step": 199
1603
+ },
1604
+ {
1605
+ "epoch": 1.822857142857143,
1606
+ "grad_norm": 0.4915157876191495,
1607
+ "learning_rate": 1.8671019874214237e-06,
1608
+ "loss": 0.6247,
1609
+ "num_tokens": 83857268.0,
1610
+ "step": 200
1611
+ },
1612
+ {
1613
+ "epoch": 1.8319999999999999,
1614
+ "grad_norm": 0.4795616878883829,
1615
+ "learning_rate": 1.8428590818792135e-06,
1616
+ "loss": 0.597,
1617
+ "num_tokens": 84283309.0,
1618
+ "step": 201
1619
+ },
1620
+ {
1621
+ "epoch": 1.8411428571428572,
1622
+ "grad_norm": 0.4774342459205278,
1623
+ "learning_rate": 1.8186823775480917e-06,
1624
+ "loss": 0.6228,
1625
+ "num_tokens": 84738929.0,
1626
+ "step": 202
1627
+ },
1628
+ {
1629
+ "epoch": 1.8502857142857143,
1630
+ "grad_norm": 0.4943608455779546,
1631
+ "learning_rate": 1.7945743100199706e-06,
1632
+ "loss": 0.6322,
1633
+ "num_tokens": 85153992.0,
1634
+ "step": 203
1635
+ },
1636
+ {
1637
+ "epoch": 1.8594285714285714,
1638
+ "grad_norm": 0.4713560174328036,
1639
+ "learning_rate": 1.7705373079722083e-06,
1640
+ "loss": 0.642,
1641
+ "num_tokens": 85623688.0,
1642
+ "step": 204
1643
+ },
1644
+ {
1645
+ "epoch": 1.8685714285714285,
1646
+ "grad_norm": 0.5141695873278811,
1647
+ "learning_rate": 1.7465737929229317e-06,
1648
+ "loss": 0.6091,
1649
+ "num_tokens": 86006323.0,
1650
+ "step": 205
1651
+ },
1652
+ {
1653
+ "epoch": 1.8777142857142857,
1654
+ "grad_norm": 0.5000534330821961,
1655
+ "learning_rate": 1.722686178987097e-06,
1656
+ "loss": 0.6102,
1657
+ "num_tokens": 86404792.0,
1658
+ "step": 206
1659
+ },
1660
+ {
1661
+ "epoch": 1.886857142857143,
1662
+ "grad_norm": 0.5025822929123239,
1663
+ "learning_rate": 1.6988768726332856e-06,
1664
+ "loss": 0.6379,
1665
+ "num_tokens": 86854752.0,
1666
+ "step": 207
1667
+ },
1668
+ {
1669
+ "epoch": 1.896,
1670
+ "grad_norm": 0.49088754619114366,
1671
+ "learning_rate": 1.6751482724412716e-06,
1672
+ "loss": 0.6353,
1673
+ "num_tokens": 87282488.0,
1674
+ "step": 208
1675
+ },
1676
+ {
1677
+ "epoch": 1.9051428571428572,
1678
+ "grad_norm": 0.5251674366397446,
1679
+ "learning_rate": 1.651502768860389e-06,
1680
+ "loss": 0.5973,
1681
+ "num_tokens": 87669853.0,
1682
+ "step": 209
1683
+ },
1684
+ {
1685
+ "epoch": 1.9142857142857141,
1686
+ "grad_norm": 0.4689490751639795,
1687
+ "learning_rate": 1.6279427439687154e-06,
1688
+ "loss": 0.6304,
1689
+ "num_tokens": 88130980.0,
1690
+ "step": 210
1691
+ },
1692
+ {
1693
+ "epoch": 1.9234285714285715,
1694
+ "grad_norm": 0.472058082568105,
1695
+ "learning_rate": 1.6044705712330932e-06,
1696
+ "loss": 0.5638,
1697
+ "num_tokens": 88570357.0,
1698
+ "step": 211
1699
+ },
1700
+ {
1701
+ "epoch": 1.9325714285714286,
1702
+ "grad_norm": 0.4955095804093834,
1703
+ "learning_rate": 1.5810886152700302e-06,
1704
+ "loss": 0.6078,
1705
+ "num_tokens": 88981662.0,
1706
+ "step": 212
1707
+ },
1708
+ {
1709
+ "epoch": 1.9417142857142857,
1710
+ "grad_norm": 0.502372210861262,
1711
+ "learning_rate": 1.5577992316074783e-06,
1712
+ "loss": 0.6023,
1713
+ "num_tokens": 89372451.0,
1714
+ "step": 213
1715
+ },
1716
+ {
1717
+ "epoch": 1.9508571428571428,
1718
+ "grad_norm": 0.5079308074061759,
1719
+ "learning_rate": 1.5346047664475422e-06,
1720
+ "loss": 0.6403,
1721
+ "num_tokens": 89802073.0,
1722
+ "step": 214
1723
+ },
1724
+ {
1725
+ "epoch": 1.96,
1726
+ "grad_norm": 0.4700590581768767,
1727
+ "learning_rate": 1.511507556430114e-06,
1728
+ "loss": 0.628,
1729
+ "num_tokens": 90260756.0,
1730
+ "step": 215
1731
+ },
1732
+ {
1733
+ "epoch": 1.9691428571428573,
1734
+ "grad_norm": 0.50339097459113,
1735
+ "learning_rate": 1.4885099283974774e-06,
1736
+ "loss": 0.6428,
1737
+ "num_tokens": 90666132.0,
1738
+ "step": 216
1739
+ },
1740
+ {
1741
+ "epoch": 1.9782857142857142,
1742
+ "grad_norm": 0.514562609979602,
1743
+ "learning_rate": 1.465614199159905e-06,
1744
+ "loss": 0.6365,
1745
+ "num_tokens": 91063409.0,
1746
+ "step": 217
1747
+ },
1748
+ {
1749
+ "epoch": 1.9874285714285715,
1750
+ "grad_norm": 0.48835023162219804,
1751
+ "learning_rate": 1.4428226752622509e-06,
1752
+ "loss": 0.5954,
1753
+ "num_tokens": 91473599.0,
1754
+ "step": 218
1755
+ },
1756
+ {
1757
+ "epoch": 1.9965714285714284,
1758
+ "grad_norm": 0.47655828723147114,
1759
+ "learning_rate": 1.420137652751593e-06,
1760
+ "loss": 0.5973,
1761
+ "num_tokens": 91933410.0,
1762
+ "step": 219
1763
+ },
1764
+ {
1765
+ "epoch": 2.0,
1766
+ "grad_norm": 0.789231462279532,
1767
+ "learning_rate": 1.3975614169459253e-06,
1768
+ "loss": 0.6301,
1769
+ "num_tokens": 92090067.0,
1770
+ "step": 220
1771
+ },
1772
+ {
1773
+ "epoch": 2.0091428571428573,
1774
+ "grad_norm": 0.5711191577315374,
1775
+ "learning_rate": 1.3750962422039269e-06,
1776
+ "loss": 0.6032,
1777
+ "num_tokens": 92546736.0,
1778
+ "step": 221
1779
+ },
1780
+ {
1781
+ "epoch": 2.0182857142857142,
1782
+ "grad_norm": 0.5374729825328671,
1783
+ "learning_rate": 1.3527443916958466e-06,
1784
+ "loss": 0.5982,
1785
+ "num_tokens": 92984957.0,
1786
+ "step": 222
1787
+ },
1788
+ {
1789
+ "epoch": 2.0274285714285716,
1790
+ "grad_norm": 0.5318016866757004,
1791
+ "learning_rate": 1.3305081171755092e-06,
1792
+ "loss": 0.58,
1793
+ "num_tokens": 93430346.0,
1794
+ "step": 223
1795
+ },
1796
+ {
1797
+ "epoch": 2.0365714285714285,
1798
+ "grad_norm": 0.5378310465822619,
1799
+ "learning_rate": 1.3083896587534606e-06,
1800
+ "loss": 0.572,
1801
+ "num_tokens": 93859357.0,
1802
+ "step": 224
1803
+ },
1804
+ {
1805
+ "epoch": 2.045714285714286,
1806
+ "grad_norm": 0.5902220930968932,
1807
+ "learning_rate": 1.2863912446713084e-06,
1808
+ "loss": 0.5815,
1809
+ "num_tokens": 94235216.0,
1810
+ "step": 225
1811
+ },
1812
+ {
1813
+ "epoch": 2.0548571428571427,
1814
+ "grad_norm": 0.5405043387197087,
1815
+ "learning_rate": 1.2645150910772413e-06,
1816
+ "loss": 0.5617,
1817
+ "num_tokens": 94651501.0,
1818
+ "step": 226
1819
+ },
1820
+ {
1821
+ "epoch": 2.064,
1822
+ "grad_norm": 0.5385666206793902,
1823
+ "learning_rate": 1.2427634018027673e-06,
1824
+ "loss": 0.5644,
1825
+ "num_tokens": 95069945.0,
1826
+ "step": 227
1827
+ },
1828
+ {
1829
+ "epoch": 2.073142857142857,
1830
+ "grad_norm": 0.4997592766482857,
1831
+ "learning_rate": 1.2211383681407022e-06,
1832
+ "loss": 0.5664,
1833
+ "num_tokens": 95524927.0,
1834
+ "step": 228
1835
+ },
1836
+ {
1837
+ "epoch": 2.0822857142857143,
1838
+ "grad_norm": 0.5529900645674626,
1839
+ "learning_rate": 1.1996421686244179e-06,
1840
+ "loss": 0.5776,
1841
+ "num_tokens": 95918641.0,
1842
+ "step": 229
1843
+ },
1844
+ {
1845
+ "epoch": 2.0914285714285716,
1846
+ "grad_norm": 0.5415131513338728,
1847
+ "learning_rate": 1.1782769688083647e-06,
1848
+ "loss": 0.5786,
1849
+ "num_tokens": 96308405.0,
1850
+ "step": 230
1851
+ },
1852
+ {
1853
+ "epoch": 2.1005714285714285,
1854
+ "grad_norm": 0.5354002873656379,
1855
+ "learning_rate": 1.1570449210499213e-06,
1856
+ "loss": 0.5613,
1857
+ "num_tokens": 96732646.0,
1858
+ "step": 231
1859
+ },
1860
+ {
1861
+ "epoch": 2.109714285714286,
1862
+ "grad_norm": 0.5430380283286926,
1863
+ "learning_rate": 1.135948164292557e-06,
1864
+ "loss": 0.542,
1865
+ "num_tokens": 97156843.0,
1866
+ "step": 232
1867
+ },
1868
+ {
1869
+ "epoch": 2.1188571428571428,
1870
+ "grad_norm": 0.5301770327914718,
1871
+ "learning_rate": 1.1149888238503537e-06,
1872
+ "loss": 0.5774,
1873
+ "num_tokens": 97606726.0,
1874
+ "step": 233
1875
+ },
1876
+ {
1877
+ "epoch": 2.128,
1878
+ "grad_norm": 0.5525594315362994,
1879
+ "learning_rate": 1.0941690111939002e-06,
1880
+ "loss": 0.5566,
1881
+ "num_tokens": 97986735.0,
1882
+ "step": 234
1883
+ },
1884
+ {
1885
+ "epoch": 2.137142857142857,
1886
+ "grad_norm": 0.4995496823018478,
1887
+ "learning_rate": 1.0734908237375783e-06,
1888
+ "loss": 0.5766,
1889
+ "num_tokens": 98468501.0,
1890
+ "step": 235
1891
+ },
1892
+ {
1893
+ "epoch": 2.1462857142857144,
1894
+ "grad_norm": 0.5378604882040718,
1895
+ "learning_rate": 1.0529563446282665e-06,
1896
+ "loss": 0.5632,
1897
+ "num_tokens": 98903725.0,
1898
+ "step": 236
1899
+ },
1900
+ {
1901
+ "epoch": 2.1554285714285712,
1902
+ "grad_norm": 0.5207373128952933,
1903
+ "learning_rate": 1.0325676425354828e-06,
1904
+ "loss": 0.5636,
1905
+ "num_tokens": 99331228.0,
1906
+ "step": 237
1907
+ },
1908
+ {
1909
+ "epoch": 2.1645714285714286,
1910
+ "grad_norm": 0.5256645631693067,
1911
+ "learning_rate": 1.0123267714429826e-06,
1912
+ "loss": 0.5922,
1913
+ "num_tokens": 99763837.0,
1914
+ "step": 238
1915
+ },
1916
+ {
1917
+ "epoch": 2.1737142857142855,
1918
+ "grad_norm": 0.5321491484630023,
1919
+ "learning_rate": 9.922357704418394e-07,
1920
+ "loss": 0.5849,
1921
+ "num_tokens": 100178817.0,
1922
+ "step": 239
1923
+ },
1924
+ {
1925
+ "epoch": 2.182857142857143,
1926
+ "grad_norm": 0.5138997122471298,
1927
+ "learning_rate": 9.722966635250222e-07,
1928
+ "loss": 0.5401,
1929
+ "num_tokens": 100610730.0,
1930
+ "step": 240
1931
+ },
1932
+ {
1933
+ "epoch": 2.192,
1934
+ "grad_norm": 0.4943367780588382,
1935
+ "learning_rate": 9.525114593834975e-07,
1936
+ "loss": 0.5851,
1937
+ "num_tokens": 101068964.0,
1938
+ "step": 241
1939
+ },
1940
+ {
1941
+ "epoch": 2.201142857142857,
1942
+ "grad_norm": 0.5154577499927364,
1943
+ "learning_rate": 9.328821512038716e-07,
1944
+ "loss": 0.5884,
1945
+ "num_tokens": 101487081.0,
1946
+ "step": 242
1947
+ },
1948
+ {
1949
+ "epoch": 2.2102857142857144,
1950
+ "grad_norm": 0.5222259240916006,
1951
+ "learning_rate": 9.134107164675898e-07,
1952
+ "loss": 0.5801,
1953
+ "num_tokens": 101904000.0,
1954
+ "step": 243
1955
+ },
1956
+ {
1957
+ "epoch": 2.2194285714285713,
1958
+ "grad_norm": 0.5259169693667993,
1959
+ "learning_rate": 8.940991167517313e-07,
1960
+ "loss": 0.5807,
1961
+ "num_tokens": 102307191.0,
1962
+ "step": 244
1963
+ },
1964
+ {
1965
+ "epoch": 2.2285714285714286,
1966
+ "grad_norm": 0.5206118106771275,
1967
+ "learning_rate": 8.749492975313897e-07,
1968
+ "loss": 0.5614,
1969
+ "num_tokens": 102716603.0,
1970
+ "step": 245
1971
+ },
1972
+ {
1973
+ "epoch": 2.2377142857142855,
1974
+ "grad_norm": 0.5219924329022366,
1975
+ "learning_rate": 8.559631879836838e-07,
1976
+ "loss": 0.584,
1977
+ "num_tokens": 103129732.0,
1978
+ "step": 246
1979
+ },
1980
+ {
1981
+ "epoch": 2.246857142857143,
1982
+ "grad_norm": 0.4964769891153005,
1983
+ "learning_rate": 8.371427007934174e-07,
1984
+ "loss": 0.5742,
1985
+ "num_tokens": 103552339.0,
1986
+ "step": 247
1987
+ },
1988
+ {
1989
+ "epoch": 2.2560000000000002,
1990
+ "grad_norm": 0.507390544236327,
1991
+ "learning_rate": 8.184897319603813e-07,
1992
+ "loss": 0.6142,
1993
+ "num_tokens": 103987991.0,
1994
+ "step": 248
1995
+ },
1996
+ {
1997
+ "epoch": 2.265142857142857,
1998
+ "grad_norm": 0.4989116246504005,
1999
+ "learning_rate": 8.000061606083579e-07,
2000
+ "loss": 0.6119,
2001
+ "num_tokens": 104429673.0,
2002
+ "step": 249
2003
+ },
2004
+ {
2005
+ "epoch": 2.2742857142857145,
2006
+ "grad_norm": 0.5098053191178704,
2007
+ "learning_rate": 7.816938487958131e-07,
2008
+ "loss": 0.5546,
2009
+ "num_tokens": 104841554.0,
2010
+ "step": 250
2011
+ },
2012
+ {
2013
+ "epoch": 2.2834285714285714,
2014
+ "grad_norm": 0.5089115422799331,
2015
+ "learning_rate": 7.635546413283054e-07,
2016
+ "loss": 0.5832,
2017
+ "num_tokens": 105253055.0,
2018
+ "step": 251
2019
+ },
2020
+ {
2021
+ "epoch": 2.2925714285714287,
2022
+ "grad_norm": 0.5348285772467526,
2023
+ "learning_rate": 7.455903655726437e-07,
2024
+ "loss": 0.5262,
2025
+ "num_tokens": 105614395.0,
2026
+ "step": 252
2027
+ },
2028
+ {
2029
+ "epoch": 2.3017142857142856,
2030
+ "grad_norm": 0.5320710749897903,
2031
+ "learning_rate": 7.278028312727961e-07,
2032
+ "loss": 0.5374,
2033
+ "num_tokens": 105984595.0,
2034
+ "step": 253
2035
+ },
2036
+ {
2037
+ "epoch": 2.310857142857143,
2038
+ "grad_norm": 0.5015290198043492,
2039
+ "learning_rate": 7.101938303675674e-07,
2040
+ "loss": 0.5674,
2041
+ "num_tokens": 106417649.0,
2042
+ "step": 254
2043
+ },
2044
+ {
2045
+ "epoch": 2.32,
2046
+ "grad_norm": 0.5164124073124037,
2047
+ "learning_rate": 6.927651368100843e-07,
2048
+ "loss": 0.5702,
2049
+ "num_tokens": 106818638.0,
2050
+ "step": 255
2051
+ },
2052
+ {
2053
+ "epoch": 2.329142857142857,
2054
+ "grad_norm": 0.4846215779170027,
2055
+ "learning_rate": 6.755185063890818e-07,
2056
+ "loss": 0.5509,
2057
+ "num_tokens": 107258625.0,
2058
+ "step": 256
2059
+ },
2060
+ {
2061
+ "epoch": 2.338285714285714,
2062
+ "grad_norm": 0.5097907143887082,
2063
+ "learning_rate": 6.584556765520231e-07,
2064
+ "loss": 0.5798,
2065
+ "num_tokens": 107680389.0,
2066
+ "step": 257
2067
+ },
2068
+ {
2069
+ "epoch": 2.3474285714285714,
2070
+ "grad_norm": 0.5068807711002643,
2071
+ "learning_rate": 6.415783662300662e-07,
2072
+ "loss": 0.5877,
2073
+ "num_tokens": 108115625.0,
2074
+ "step": 258
2075
+ },
2076
+ {
2077
+ "epoch": 2.3565714285714288,
2078
+ "grad_norm": 0.5179162356392562,
2079
+ "learning_rate": 6.248882756648988e-07,
2080
+ "loss": 0.5623,
2081
+ "num_tokens": 108526100.0,
2082
+ "step": 259
2083
+ },
2084
+ {
2085
+ "epoch": 2.3657142857142857,
2086
+ "grad_norm": 0.5074768216794914,
2087
+ "learning_rate": 6.083870862374513e-07,
2088
+ "loss": 0.5701,
2089
+ "num_tokens": 108943744.0,
2090
+ "step": 260
2091
+ },
2092
+ {
2093
+ "epoch": 2.374857142857143,
2094
+ "grad_norm": 0.4954184591704928,
2095
+ "learning_rate": 5.920764602985141e-07,
2096
+ "loss": 0.562,
2097
+ "num_tokens": 109381379.0,
2098
+ "step": 261
2099
+ },
2100
+ {
2101
+ "epoch": 2.384,
2102
+ "grad_norm": 0.5147752391401487,
2103
+ "learning_rate": 5.759580410012691e-07,
2104
+ "loss": 0.565,
2105
+ "num_tokens": 109793247.0,
2106
+ "step": 262
2107
+ },
2108
+ {
2109
+ "epoch": 2.3931428571428572,
2110
+ "grad_norm": 0.5253288675199733,
2111
+ "learning_rate": 5.600334521357581e-07,
2112
+ "loss": 0.595,
2113
+ "num_tokens": 110202872.0,
2114
+ "step": 263
2115
+ },
2116
+ {
2117
+ "epoch": 2.402285714285714,
2118
+ "grad_norm": 0.48483979120150505,
2119
+ "learning_rate": 5.443042979652957e-07,
2120
+ "loss": 0.5725,
2121
+ "num_tokens": 110639527.0,
2122
+ "step": 264
2123
+ },
2124
+ {
2125
+ "epoch": 2.4114285714285715,
2126
+ "grad_norm": 0.5039540186447794,
2127
+ "learning_rate": 5.287721630648615e-07,
2128
+ "loss": 0.5826,
2129
+ "num_tokens": 111073504.0,
2130
+ "step": 265
2131
+ },
2132
+ {
2133
+ "epoch": 2.420571428571429,
2134
+ "grad_norm": 0.5283553665176294,
2135
+ "learning_rate": 5.134386121614615e-07,
2136
+ "loss": 0.5598,
2137
+ "num_tokens": 111473527.0,
2138
+ "step": 266
2139
+ },
2140
+ {
2141
+ "epoch": 2.4297142857142857,
2142
+ "grad_norm": 0.5021929773072068,
2143
+ "learning_rate": 4.983051899764946e-07,
2144
+ "loss": 0.5467,
2145
+ "num_tokens": 111888096.0,
2146
+ "step": 267
2147
+ },
2148
+ {
2149
+ "epoch": 2.4388571428571426,
2150
+ "grad_norm": 0.5086106631732937,
2151
+ "learning_rate": 4.833734210701435e-07,
2152
+ "loss": 0.5653,
2153
+ "num_tokens": 112274040.0,
2154
+ "step": 268
2155
+ },
2156
+ {
2157
+ "epoch": 2.448,
2158
+ "grad_norm": 0.5070750574100812,
2159
+ "learning_rate": 4.6864480968778103e-07,
2160
+ "loss": 0.5854,
2161
+ "num_tokens": 112701254.0,
2162
+ "step": 269
2163
+ },
2164
+ {
2165
+ "epoch": 2.4571428571428573,
2166
+ "grad_norm": 0.5389372884949655,
2167
+ "learning_rate": 4.541208396084304e-07,
2168
+ "loss": 0.569,
2169
+ "num_tokens": 113084811.0,
2170
+ "step": 270
2171
+ },
2172
+ {
2173
+ "epoch": 2.466285714285714,
2174
+ "grad_norm": 0.4954996531070081,
2175
+ "learning_rate": 4.39802973995295e-07,
2176
+ "loss": 0.5931,
2177
+ "num_tokens": 113515668.0,
2178
+ "step": 271
2179
+ },
2180
+ {
2181
+ "epoch": 2.4754285714285715,
2182
+ "grad_norm": 0.5335874562537316,
2183
+ "learning_rate": 4.2569265524834756e-07,
2184
+ "loss": 0.5588,
2185
+ "num_tokens": 113895133.0,
2186
+ "step": 272
2187
+ },
2188
+ {
2189
+ "epoch": 2.4845714285714284,
2190
+ "grad_norm": 0.4974120943217034,
2191
+ "learning_rate": 4.117913048590283e-07,
2192
+ "loss": 0.5723,
2193
+ "num_tokens": 114325228.0,
2194
+ "step": 273
2195
+ },
2196
+ {
2197
+ "epoch": 2.4937142857142858,
2198
+ "grad_norm": 0.47465781973096216,
2199
+ "learning_rate": 3.9810032326704106e-07,
2200
+ "loss": 0.5359,
2201
+ "num_tokens": 114773958.0,
2202
+ "step": 274
2203
+ },
2204
+ {
2205
+ "epoch": 2.5028571428571427,
2206
+ "grad_norm": 0.4954990612858109,
2207
+ "learning_rate": 3.8462108971926564e-07,
2208
+ "loss": 0.5797,
2209
+ "num_tokens": 115212487.0,
2210
+ "step": 275
2211
+ },
2212
+ {
2213
+ "epoch": 2.512,
2214
+ "grad_norm": 0.4968181717935684,
2215
+ "learning_rate": 3.713549621308174e-07,
2216
+ "loss": 0.5942,
2217
+ "num_tokens": 115622910.0,
2218
+ "step": 276
2219
+ },
2220
+ {
2221
+ "epoch": 2.5211428571428574,
2222
+ "grad_norm": 0.5082368933542878,
2223
+ "learning_rate": 3.5830327694824777e-07,
2224
+ "loss": 0.5652,
2225
+ "num_tokens": 116027725.0,
2226
+ "step": 277
2227
+ },
2228
+ {
2229
+ "epoch": 2.5302857142857142,
2230
+ "grad_norm": 0.4866800840052398,
2231
+ "learning_rate": 3.4546734901490466e-07,
2232
+ "loss": 0.5783,
2233
+ "num_tokens": 116475926.0,
2234
+ "step": 278
2235
+ },
2236
+ {
2237
+ "epoch": 2.5394285714285716,
2238
+ "grad_norm": 0.5091530695044061,
2239
+ "learning_rate": 3.3284847143847834e-07,
2240
+ "loss": 0.5903,
2241
+ "num_tokens": 116890461.0,
2242
+ "step": 279
2243
+ },
2244
+ {
2245
+ "epoch": 2.5485714285714285,
2246
+ "grad_norm": 0.5115099249876448,
2247
+ "learning_rate": 3.2044791546072985e-07,
2248
+ "loss": 0.5618,
2249
+ "num_tokens": 117282195.0,
2250
+ "step": 280
2251
+ },
2252
+ {
2253
+ "epoch": 2.557714285714286,
2254
+ "grad_norm": 0.5050583956238427,
2255
+ "learning_rate": 3.0826693032942586e-07,
2256
+ "loss": 0.5711,
2257
+ "num_tokens": 117710503.0,
2258
+ "step": 281
2259
+ },
2260
+ {
2261
+ "epoch": 2.5668571428571427,
2262
+ "grad_norm": 0.5374803213347745,
2263
+ "learning_rate": 2.963067431724856e-07,
2264
+ "loss": 0.5629,
2265
+ "num_tokens": 118081184.0,
2266
+ "step": 282
2267
+ },
2268
+ {
2269
+ "epoch": 2.576,
2270
+ "grad_norm": 0.4984343530594435,
2271
+ "learning_rate": 2.8456855887436074e-07,
2272
+ "loss": 0.5765,
2273
+ "num_tokens": 118489510.0,
2274
+ "step": 283
2275
+ },
2276
+ {
2277
+ "epoch": 2.5851428571428574,
2278
+ "grad_norm": 0.5090570265753169,
2279
+ "learning_rate": 2.730535599546524e-07,
2280
+ "loss": 0.5999,
2281
+ "num_tokens": 118876624.0,
2282
+ "step": 284
2283
+ },
2284
+ {
2285
+ "epoch": 2.5942857142857143,
2286
+ "grad_norm": 0.519781544356009,
2287
+ "learning_rate": 2.617629064489838e-07,
2288
+ "loss": 0.6156,
2289
+ "num_tokens": 119323858.0,
2290
+ "step": 285
2291
+ },
2292
+ {
2293
+ "epoch": 2.603428571428571,
2294
+ "grad_norm": 0.48368780311253534,
2295
+ "learning_rate": 2.50697735792135e-07,
2296
+ "loss": 0.5865,
2297
+ "num_tokens": 119746235.0,
2298
+ "step": 286
2299
+ },
2300
+ {
2301
+ "epoch": 2.6125714285714285,
2302
+ "grad_norm": 0.6677870618002503,
2303
+ "learning_rate": 2.398591627034588e-07,
2304
+ "loss": 0.5738,
2305
+ "num_tokens": 120176419.0,
2306
+ "step": 287
2307
+ },
2308
+ {
2309
+ "epoch": 2.621714285714286,
2310
+ "grad_norm": 0.5161420445880435,
2311
+ "learning_rate": 2.2924827907457841e-07,
2312
+ "loss": 0.602,
2313
+ "num_tokens": 120585061.0,
2314
+ "step": 288
2315
+ },
2316
+ {
2317
+ "epoch": 2.630857142857143,
2318
+ "grad_norm": 0.4953371088579667,
2319
+ "learning_rate": 2.1886615385939502e-07,
2320
+ "loss": 0.5847,
2321
+ "num_tokens": 121022910.0,
2322
+ "step": 289
2323
+ },
2324
+ {
2325
+ "epoch": 2.64,
2326
+ "grad_norm": 0.4700637789497405,
2327
+ "learning_rate": 2.0871383296639487e-07,
2328
+ "loss": 0.574,
2329
+ "num_tokens": 121496265.0,
2330
+ "step": 290
2331
+ },
2332
+ {
2333
+ "epoch": 2.649142857142857,
2334
+ "grad_norm": 0.48662101727536294,
2335
+ "learning_rate": 1.9879233915328312e-07,
2336
+ "loss": 0.5765,
2337
+ "num_tokens": 121936055.0,
2338
+ "step": 291
2339
+ },
2340
+ {
2341
+ "epoch": 2.6582857142857144,
2342
+ "grad_norm": 0.5099077987670947,
2343
+ "learning_rate": 1.891026719239547e-07,
2344
+ "loss": 0.5599,
2345
+ "num_tokens": 122342895.0,
2346
+ "step": 292
2347
+ },
2348
+ {
2349
+ "epoch": 2.6674285714285713,
2350
+ "grad_norm": 0.4938591026159351,
2351
+ "learning_rate": 1.7964580742779847e-07,
2352
+ "loss": 0.6128,
2353
+ "num_tokens": 122770275.0,
2354
+ "step": 293
2355
+ },
2356
+ {
2357
+ "epoch": 2.6765714285714286,
2358
+ "grad_norm": 0.4870135117164128,
2359
+ "learning_rate": 1.7042269836135882e-07,
2360
+ "loss": 0.5931,
2361
+ "num_tokens": 123192007.0,
2362
+ "step": 294
2363
+ },
2364
+ {
2365
+ "epoch": 2.685714285714286,
2366
+ "grad_norm": 0.5240800119635359,
2367
+ "learning_rate": 1.6143427387236455e-07,
2368
+ "loss": 0.5996,
2369
+ "num_tokens": 123596083.0,
2370
+ "step": 295
2371
+ },
2372
+ {
2373
+ "epoch": 2.694857142857143,
2374
+ "grad_norm": 0.5217629720972092,
2375
+ "learning_rate": 1.5268143946611802e-07,
2376
+ "loss": 0.605,
2377
+ "num_tokens": 124000214.0,
2378
+ "step": 296
2379
+ },
2380
+ {
2381
+ "epoch": 2.7039999999999997,
2382
+ "grad_norm": 0.4949853085092262,
2383
+ "learning_rate": 1.441650769142791e-07,
2384
+ "loss": 0.5705,
2385
+ "num_tokens": 124420120.0,
2386
+ "step": 297
2387
+ },
2388
+ {
2389
+ "epoch": 2.713142857142857,
2390
+ "grad_norm": 0.49569537617283155,
2391
+ "learning_rate": 1.3588604416603424e-07,
2392
+ "loss": 0.5722,
2393
+ "num_tokens": 124837441.0,
2394
+ "step": 298
2395
+ },
2396
+ {
2397
+ "epoch": 2.7222857142857144,
2398
+ "grad_norm": 0.5148571496736348,
2399
+ "learning_rate": 1.278451752616608e-07,
2400
+ "loss": 0.582,
2401
+ "num_tokens": 125229470.0,
2402
+ "step": 299
2403
+ },
2404
+ {
2405
+ "epoch": 2.7314285714285713,
2406
+ "grad_norm": 0.4755041735866527,
2407
+ "learning_rate": 1.2004328024850938e-07,
2408
+ "loss": 0.5543,
2409
+ "num_tokens": 125662137.0,
2410
+ "step": 300
2411
+ },
2412
+ {
2413
+ "epoch": 2.7405714285714287,
2414
+ "grad_norm": 0.5106445243079593,
2415
+ "learning_rate": 1.1248114509939817e-07,
2416
+ "loss": 0.5949,
2417
+ "num_tokens": 126052227.0,
2418
+ "step": 301
2419
+ },
2420
+ {
2421
+ "epoch": 2.7497142857142856,
2422
+ "grad_norm": 0.4914711633020567,
2423
+ "learning_rate": 1.0515953163342973e-07,
2424
+ "loss": 0.593,
2425
+ "num_tokens": 126455360.0,
2426
+ "step": 302
2427
+ },
2428
+ {
2429
+ "epoch": 2.758857142857143,
2430
+ "grad_norm": 0.49545896667246636,
2431
+ "learning_rate": 9.807917743924838e-08,
2432
+ "loss": 0.5458,
2433
+ "num_tokens": 126870673.0,
2434
+ "step": 303
2435
+ },
2436
+ {
2437
+ "epoch": 2.768,
2438
+ "grad_norm": 0.49575860288282114,
2439
+ "learning_rate": 9.12407958007322e-08,
2440
+ "loss": 0.5402,
2441
+ "num_tokens": 127271445.0,
2442
+ "step": 304
2443
+ },
2444
+ {
2445
+ "epoch": 2.777142857142857,
2446
+ "grad_norm": 0.4915092472121106,
2447
+ "learning_rate": 8.464507562513657e-08,
2448
+ "loss": 0.6131,
2449
+ "num_tokens": 127712507.0,
2450
+ "step": 305
2451
+ },
2452
+ {
2453
+ "epoch": 2.7862857142857145,
2454
+ "grad_norm": 0.4961962340392434,
2455
+ "learning_rate": 7.829268137369311e-08,
2456
+ "loss": 0.5851,
2457
+ "num_tokens": 128132380.0,
2458
+ "step": 306
2459
+ },
2460
+ {
2461
+ "epoch": 2.7954285714285714,
2462
+ "grad_norm": 0.4752993340814379,
2463
+ "learning_rate": 7.21842529946698e-08,
2464
+ "loss": 0.6129,
2465
+ "num_tokens": 128588339.0,
2466
+ "step": 307
2467
+ },
2468
+ {
2469
+ "epoch": 2.8045714285714287,
2470
+ "grad_norm": 0.503510989247386,
2471
+ "learning_rate": 6.632040585890398e-08,
2472
+ "loss": 0.5674,
2473
+ "num_tokens": 129005751.0,
2474
+ "step": 308
2475
+ },
2476
+ {
2477
+ "epoch": 2.8137142857142856,
2478
+ "grad_norm": 0.4724716751556215,
2479
+ "learning_rate": 6.070173069780638e-08,
2480
+ "loss": 0.562,
2481
+ "num_tokens": 129476694.0,
2482
+ "step": 309
2483
+ },
2484
+ {
2485
+ "epoch": 2.822857142857143,
2486
+ "grad_norm": 0.48385278796222503,
2487
+ "learning_rate": 5.532879354385234e-08,
2488
+ "loss": 0.5745,
2489
+ "num_tokens": 129914320.0,
2490
+ "step": 310
2491
+ },
2492
+ {
2493
+ "epoch": 2.832,
2494
+ "grad_norm": 0.48514365333284165,
2495
+ "learning_rate": 5.020213567355825e-08,
2496
+ "loss": 0.5667,
2497
+ "num_tokens": 130364577.0,
2498
+ "step": 311
2499
+ },
2500
+ {
2501
+ "epoch": 2.841142857142857,
2502
+ "grad_norm": 0.4780875564800783,
2503
+ "learning_rate": 4.5322273552951265e-08,
2504
+ "loss": 0.5897,
2505
+ "num_tokens": 130817643.0,
2506
+ "step": 312
2507
+ },
2508
+ {
2509
+ "epoch": 2.8502857142857145,
2510
+ "grad_norm": 0.4898713768327533,
2511
+ "learning_rate": 4.068969878554263e-08,
2512
+ "loss": 0.5874,
2513
+ "num_tokens": 131252219.0,
2514
+ "step": 313
2515
+ },
2516
+ {
2517
+ "epoch": 2.8594285714285714,
2518
+ "grad_norm": 0.47651774728183893,
2519
+ "learning_rate": 3.630487806280086e-08,
2520
+ "loss": 0.583,
2521
+ "num_tokens": 131680425.0,
2522
+ "step": 314
2523
+ },
2524
+ {
2525
+ "epoch": 2.8685714285714283,
2526
+ "grad_norm": 0.49334334956687725,
2527
+ "learning_rate": 3.216825311713689e-08,
2528
+ "loss": 0.6196,
2529
+ "num_tokens": 132110282.0,
2530
+ "step": 315
2531
+ },
2532
+ {
2533
+ "epoch": 2.8777142857142857,
2534
+ "grad_norm": 0.47081742859201037,
2535
+ "learning_rate": 2.8280240677403813e-08,
2536
+ "loss": 0.6073,
2537
+ "num_tokens": 132564761.0,
2538
+ "step": 316
2539
+ },
2540
+ {
2541
+ "epoch": 2.886857142857143,
2542
+ "grad_norm": 0.489336125798635,
2543
+ "learning_rate": 2.464123242691574e-08,
2544
+ "loss": 0.5928,
2545
+ "num_tokens": 133016872.0,
2546
+ "step": 317
2547
+ },
2548
+ {
2549
+ "epoch": 2.896,
2550
+ "grad_norm": 0.5047605121395512,
2551
+ "learning_rate": 2.1251594963986876e-08,
2552
+ "loss": 0.5916,
2553
+ "num_tokens": 133419747.0,
2554
+ "step": 318
2555
+ },
2556
+ {
2557
+ "epoch": 2.9051428571428572,
2558
+ "grad_norm": 0.5055723323188881,
2559
+ "learning_rate": 1.8111669765003005e-08,
2560
+ "loss": 0.6042,
2561
+ "num_tokens": 133842060.0,
2562
+ "step": 319
2563
+ },
2564
+ {
2565
+ "epoch": 2.914285714285714,
2566
+ "grad_norm": 0.5311741921831599,
2567
+ "learning_rate": 1.5221773150017882e-08,
2568
+ "loss": 0.5986,
2569
+ "num_tokens": 134246398.0,
2570
+ "step": 320
2571
+ },
2572
+ {
2573
+ "epoch": 2.9234285714285715,
2574
+ "grad_norm": 0.48458962339074657,
2575
+ "learning_rate": 1.2582196250888745e-08,
2576
+ "loss": 0.58,
2577
+ "num_tokens": 134665906.0,
2578
+ "step": 321
2579
+ },
2580
+ {
2581
+ "epoch": 2.9325714285714284,
2582
+ "grad_norm": 0.5273108133161314,
2583
+ "learning_rate": 1.0193204981946426e-08,
2584
+ "loss": 0.5655,
2585
+ "num_tokens": 135058042.0,
2586
+ "step": 322
2587
+ },
2588
+ {
2589
+ "epoch": 2.9417142857142857,
2590
+ "grad_norm": 0.4986724954854335,
2591
+ "learning_rate": 8.055040013207061e-09,
2592
+ "loss": 0.6096,
2593
+ "num_tokens": 135459374.0,
2594
+ "step": 323
2595
+ },
2596
+ {
2597
+ "epoch": 2.950857142857143,
2598
+ "grad_norm": 0.47288278261543093,
2599
+ "learning_rate": 6.1679167461262124e-09,
2600
+ "loss": 0.544,
2601
+ "num_tokens": 135926099.0,
2602
+ "step": 324
2603
+ },
2604
+ {
2605
+ "epoch": 2.96,
2606
+ "grad_norm": 0.48901998463055885,
2607
+ "learning_rate": 4.53202529190011e-09,
2608
+ "loss": 0.5862,
2609
+ "num_tokens": 136330163.0,
2610
+ "step": 325
2611
+ },
2612
+ {
2613
+ "epoch": 2.9691428571428573,
2614
+ "grad_norm": 0.4843858034119068,
2615
+ "learning_rate": 3.147530452311809e-09,
2616
+ "loss": 0.5486,
2617
+ "num_tokens": 136750371.0,
2618
+ "step": 326
2619
+ },
2620
+ {
2621
+ "epoch": 2.978285714285714,
2622
+ "grad_norm": 0.508393418386821,
2623
+ "learning_rate": 2.01457170313113e-09,
2624
+ "loss": 0.5906,
2625
+ "num_tokens": 137146494.0,
2626
+ "step": 327
2627
+ },
2628
+ {
2629
+ "epoch": 2.9874285714285715,
2630
+ "grad_norm": 0.493149265400495,
2631
+ "learning_rate": 1.1332631800620164e-09,
2632
+ "loss": 0.5554,
2633
+ "num_tokens": 137571606.0,
2634
+ "step": 328
2635
+ },
2636
+ {
2637
+ "epoch": 2.9965714285714284,
2638
+ "grad_norm": 0.5141360605578703,
2639
+ "learning_rate": 5.036936672447868e-10,
2640
+ "loss": 0.5281,
2641
+ "num_tokens": 137971073.0,
2642
+ "step": 329
2643
+ },
2644
+ {
2645
+ "epoch": 3.0,
2646
+ "grad_norm": 0.7668987334851985,
2647
+ "learning_rate": 1.2592658831245274e-10,
2648
+ "loss": 0.5627,
2649
+ "num_tokens": 138142278.0,
2650
+ "step": 330
2651
+ }
2652
+ ],
2653
+ "logging_steps": 1,
2654
+ "max_steps": 330,
2655
+ "num_input_tokens_seen": 0,
2656
+ "num_train_epochs": 3,
2657
+ "save_steps": 500,
2658
+ "stateful_callbacks": {
2659
+ "TrainerControl": {
2660
+ "args": {
2661
+ "should_epoch_stop": false,
2662
+ "should_evaluate": false,
2663
+ "should_log": false,
2664
+ "should_save": true,
2665
+ "should_training_stop": true
2666
+ },
2667
+ "attributes": {}
2668
+ }
2669
+ },
2670
+ "total_flos": 8.200567398630162e+18,
2671
+ "train_batch_size": 2,
2672
+ "trial_name": null,
2673
+ "trial_params": null
2674
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:47a2a0ed0eafa2e85d833a03b3658c98fad208b30049879ef9107a42054b3e11
3
+ size 8337
zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if ZERO_STAGE not in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info("Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info("Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)