ppo-LunarLander-v2 / config.json
piotrklima's picture
Upload PPO LunarLander-v2 trained agent
90ff228
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79c55fa39ea0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79c55fa39f30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79c55fa39fc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79c55fa3a050>", "_build": "<function ActorCriticPolicy._build at 0x79c55fa3a0e0>", "forward": "<function ActorCriticPolicy.forward at 0x79c55fa3a170>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79c55fa3a200>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79c55fa3a290>", "_predict": "<function ActorCriticPolicy._predict at 0x79c55fa3a320>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79c55fa3a3b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79c55fa3a440>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79c55fa3a4d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79c55f9d7200>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1699624174014450793, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAO3lAT7Bi2Q/1MgYPjW9+r79ueY9w0tivQAAAAAAAAAA0zh2PjZuqD/EYwY/ih+lvsCupD6yBhg+AAAAAAAAAABj7si+B/M2P3vd0L3/D9K+CiJdvqHkAj4AAAAAAAAAAJO4Kj7cci68he4iO3fyE7mnAJK9Iw5NugAAgD8AAIA/gJ04PQtvVD9/Y689T0oGv88cwDxWz6W8AAAAAAAAAADmE6w+SVBCP9Ujez2+4K2+u9RBPiOe2r0AAAAAAAAAAMDHZL46xYI+SInWPReugL7NYhA8pucMvQAAAAAAAAAAMxxaPVeLuT4F2DM9Wiuivji/S7yWOiQ8AAAAAAAAAACAMyE+ogOePxBW+D7w2fq+JhcrPto+cT0AAAAAAAAAALoYFz714O4+S66nPZYVtb49CMQ91QBIvQAAAAAAAAAA2qWJvW3WTz7nSTY8KvG2vjaYrLyW5cs7AAAAAAAAAABmgf28fea0PxDNNb5P41S+l97fvE1aMr0AAAAAAAAAAHqZkz6IbKY+Yfwgvo1Oqb6AT6G5ak8QvQAAAAAAAAAAE24tPjafP7w1nvI7Z6cxui6xr72XwxG7AACAPwAAgD9gzBi+dpw4vBpdNL0gsb27L9iYPRBLnDwAAIA/AACAPzPxTr6UEdE7daZNuknNAzgrG3+9cg5uOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVAwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG279lEqlP+MAWyUS+6MAXSUR0CZjamDDjzadX2UKGgGR0BuOoTZg5R1aAdL3GgIR0CZjaZFG5MDdX2UKGgGR0BymTEHdGiIaAdL0mgIR0CZjmO5avA5dX2UKGgGR0BxKImfGuLaaAdL9GgIR0CZjvFOfukUdX2UKGgGR0BkwshJRO1waAdN6ANoCEdAmY+wm3OObXV9lChoBkdAcl27RfF72WgHS89oCEdAmZAKYRdyDXV9lChoBkdAbhgN5MURF2gHS8poCEdAmZBFS88La3V9lChoBkdAbbJTJhfBvmgHS+hoCEdAmZEWK/EfknV9lChoBkdAcWXY8dPtUmgHS9hoCEdAmZGVUIcBEXV9lChoBkdAYiYFTNt65WgHTegDaAhHQJmSFYJVsDZ1fZQoaAZHQHDgSdBjWkJoB0vpaAhHQJmSJETg2qF1fZQoaAZHQGNz2Hk92X9oB03oA2gIR0CZk56t1ZDBdX2UKGgGR0Bwuh+3H7xeaAdL02gIR0CZk61GLDQ7dX2UKGgGR0BvQ/nbItDlaAdNHgFoCEdAmZT8O5J9RnV9lChoBkdAcVg+zMRpUWgHTS0BaAhHQJmVBAIIF/x1fZQoaAZHQG+DL1/Ue+5oB00GAWgIR0CZlTfv4M4MdX2UKGgGR0BvZS7TUiIMaAdL4mgIR0CZlXBsQ/X5dX2UKGgGR0Bu8AX2ugYhaAdL22gIR0CZloSZ0CA+dX2UKGgGR0BvACA2AG0NaAdL7mgIR0CZltshgVoIdX2UKGgGR0BwP/yWiUPhaAdLvmgIR0CZlwS5y2hJdX2UKGgGR0Btkqt1ZDAraAdL3WgIR0CZmHEvCdjHdX2UKGgGR0Bv6V5KODJ2aAdL72gIR0CZmRq8DjiodX2UKGgGR0BwLsN6PbPAaAdL1WgIR0CZmgCaJAMVdX2UKGgGR0Bw79Li++M7aAdNPQFoCEdAmZpuHJtBOnV9lChoBkdAcesAoXsPa2gHS+NoCEdAmZvihakhzXV9lChoBkdAb5al5WzWw2gHS/toCEdAmZ1LbYbsGHV9lChoBkdAccSA1Nxlx2gHTQ4BaAhHQJmdZ8MNMGp1fZQoaAZHQHGa1RYRuj1oB00PAWgIR0CZnasMiKR/dX2UKGgGR0BsXsH0K7ZnaAdL5WgIR0CZnc7cwg1WdX2UKGgGR0BwXxsBQvYfaAdL2mgIR0CZndL+PzWgdX2UKGgGR0ByFHI1cdHUaAdL3WgIR0CZnhLowEhadX2UKGgGR0BxtsEHMUypaAdL4WgIR0CZoDnf2saLdX2UKGgGR0Bwa93kgfU4aAdL8GgIR0CZobpzLfUGdX2UKGgGR0ByNrUTcqOMaAdL+mgIR0CZootw71ZldX2UKGgGR0Bw1rbItDlYaAdNmQJoCEdAmaRdCAtnPHV9lChoBkdAYyldrO7g9GgHTegDaAhHQJmkhGViWmh1fZQoaAZHQG7fj9GZuyhoB0vkaAhHQJmk4GbCrLh1fZQoaAZHQHB9utr9EThoB00bAWgIR0CZpWDzyz5XdX2UKGgGR0Bvx3dVNpM6aAdNmAFoCEdAmaX5HAh0Q3V9lChoBkdAcBGzhxYJV2gHS/1oCEdAmaYjnNgSe3V9lChoBkdAcFh65Gz8g2gHTQkBaAhHQJmmpJ/XoTx1fZQoaAZHQGz4NuDSPU9oB0vhaAhHQJmn5jwx33Z1fZQoaAZHQHEEcbm2b5NoB0vZaAhHQJmo/zyz5XV1fZQoaAZHQGYWwpvxYq5oB03oA2gIR0CZq9fw7T2GdX2UKGgGR0BwtXO2RaHLaAdL32gIR0CZq+lMRHwxdX2UKGgGR0BxrUVoHs1LaAdNIAFoCEdAmaxT0L+glHV9lChoBkdAcdmJ53Tuv2gHS8JoCEdAmax0xVQyh3V9lChoBkdAcYKKzRhMJ2gHS/1oCEdAmazhMewLVnV9lChoBkdAb/Qzi0fHP2gHS9doCEdAma1Sro4dZXV9lChoBkdAYATVaOgg5mgHTegDaAhHQJmuGYtxuKp1fZQoaAZHQHF9iEUTL4hoB00QAWgIR0CZr6MtsenydX2UKGgGR0Bwms/MW43FaAdNEAJoCEdAma+kjTrmhnV9lChoBkdAcP9D1oQFtGgHTTsBaAhHQJmvxhttQ9B1fZQoaAZHQHBd2NJe3QVoB0v4aAhHQJmwI/xDst11fZQoaAZHQHBUqXF98Z1oB00aAWgIR0CZskL127nQdX2UKGgGR0BxQq1Aqur7aAdL02gIR0CZsp75Ec81dX2UKGgGR0Bie3yy2QXAaAdN6ANoCEdAmbP9b9qDb3V9lChoBkdAZwxVLi++NGgHTc8BaAhHQJm0EBmwqy51fZQoaAZHQHKXyTUy57RoB0vjaAhHQJm0JvtMPBl1fZQoaAZHQG4l19F4LThoB0vWaAhHQJm0JdY4hll1fZQoaAZHQG5WvugHu7ZoB0v9aAhHQJm0pU+9rXV1fZQoaAZHQHJFaGgzxgBoB00OAWgIR0CZtMb9ZRsNdX2UKGgGR0BvY9XzUZvUaAdNGgFoCEdAmbW2OdXkpHV9lChoBkdAcGNCw8nuzGgHS+9oCEdAmbYVDv3JxXV9lChoBkdAcCoK7ZnL72gHS+ZoCEdAmbfTfJmuknV9lChoBkdAb24/h2nsLWgHS+NoCEdAmbg9y925hHV9lChoBkdAcECx0MgEEGgHS/ZoCEdAmbhOK8+Ro3V9lChoBkdATGaoqCpWFWgHS25oCEdAmbkdoN/e+HV9lChoBkdAcEykhRqGlGgHS+VoCEdAmbsyFoL5RHV9lChoBkdAcC+GLUCq62gHS81oCEdAmbyA5q/M4nV9lChoBkdAcbHUcn3L3mgHS8doCEdAmb0PqxC6YnV9lChoBkdAbviYht+CsmgHS9xoCEdAmb1xVdX1anV9lChoBkdAblam78Nx2mgHS+loCEdAmb3z3yqdYnV9lChoBkdAcYt14xDb8GgHTQkBaAhHQJm/yZH/cWV1fZQoaAZHQG8aklVtGd9oB0vsaAhHQJnAbLhaTwF1fZQoaAZHQHEXliz9jwxoB0vpaAhHQJnAw9Oh0yR1fZQoaAZHQF9YXsw+MZRoB03oA2gIR0CZwjnuy/sWdX2UKGgGR0BuKv/aQFLWaAdL0GgIR0CZwlWa+evqdX2UKGgGR0BxAd/MGHHnaAdL02gIR0CZwomDUVi4dX2UKGgGR0BxnD1Iy0rtaAdL4mgIR0CZwrIl+mWMdX2UKGgGR0BghUfHPu5SaAdN6ANoCEdAmcLTb349HXV9lChoBkdAcBbbz9S/CmgHS99oCEdAmcPPJvHcUXV9lChoBkdAcH6XeWOZLWgHS8xoCEdAmcT0Qf6oEXV9lChoBkdAcTqd92HLzWgHTb0BaAhHQJnF6ojv/ip1fZQoaAZHQHExXHq/ub9oB0vLaAhHQJnGyrMkhRt1fZQoaAZHQG43/SH/LkloB0vdaAhHQJnHOlVLi/B1fZQoaAZHQHE8brTpgThoB0v/aAhHQJnIPVPN3W51fZQoaAZHQHDomDg62fFoB0v9aAhHQJnJTEaVD8d1fZQoaAZHQHIPrs4T9KpoB0vbaAhHQJnLo3vQWvd1fZQoaAZHQHDJZiRW915oB0vUaAhHQJnL2SLZSNx1fZQoaAZHQHBt8nuy/sVoB00VAWgIR0CZzKbCJoCddX2UKGgGR0BwNGgsbvPUaAdNCwFoCEdAmc13Xd0q6XV9lChoBkdAcppiX6ZYxWgHTT4BaAhHQJnNrvNNahZ1fZQoaAZHQHBhO8XenAJoB00IAWgIR0CZzbZjhDPXdX2UKGgGR0Bt7aDyvs7daAdL9GgIR0CZzhSA6MisdX2UKGgGR0BwmMqnWJ7+aAdNMgFoCEdAmc7xs/IKdHV9lChoBkdAbhl0vGp++mgHS8xoCEdAmc8ThLoOhHV9lChoBkdAcMCOYYzi0mgHS+hoCEdAmc9BEjPfK3V9lChoBkdAb49bxmTTv2gHTQMBaAhHQJnPX1g6U7l1fZQoaAZHQHES6/RE4NtoB0vbaAhHQJnPuyt3fQ91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}