--- library_name: peft base_model: mistralai/Mistral-7B-v0.1 datasets: - THUDM/AgentInstruct --- # dolphin-2.1-mistral-7b-agent-lora This is a rank 64 LoRA finetune of [ehartford/dolphin-2.1-mistral-7b](https://huggingface.co/ehartford/dolphin-2.1-mistral-7b) on [THUDM/AgentInstruct](https://huggingface.co/datasets/THUDM/AgentInstruct) for 1.1 epochs. [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) ## Prompt Format Dolphin-Agent uses ChatML as the prompt format: ``` <|im_start|>system You are Dolphin, a helpful AI assistant.<|im_end|> <|im_start|>user If Danny owns a bike, then Edward owns a bike. If Edward owns a bike, then Freddy owns a bike. If Danny owns a bike, which of the following statements must be true? Let's think step by step. I. Edward owns a bike. II. Freddy owns a bike. III. Freddy does not own a bike. Choose one answer: I only II only III only I and II only I and III only <|im_end|> <|im_start|>assistant ``` ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0 ## Training procedure ### Framework versions - PEFT 0.6.0.dev0