poudel commited on
Commit
5dc297d
·
verified ·
1 Parent(s): 2e2c976

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +69 -3
README.md CHANGED
@@ -1,3 +1,69 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - yolo
5
+ - object-detection
6
+ - cargo
7
+ - packages
8
+ - forklift
9
+ - truck
10
+ datasets:
11
+ - custom-cargo-package-dataset
12
+ model-index:
13
+ - name: YOLOv8 Cargo Package Counter
14
+ results:
15
+ - task:
16
+ type: object-detection
17
+ dataset:
18
+ name: custom-cargo-package-dataset
19
+ type: object-detection
20
+ split: train
21
+ metrics:
22
+ - type: precision
23
+ value: 0.77187
24
+ - type: recall
25
+ value: 0.11111
26
+ - type: mAP50
27
+ value: 0.09188
28
+ - type: mAP50-95
29
+ value: 0.06383
30
+ - type: F1
31
+ value: 0.19426
32
+ language:
33
+ - en
34
+ base_model: YOLOv8
35
+ pipeline_tag: object-detection
36
+ metrics:
37
+ - precision
38
+ - recall
39
+ - f1
40
+ ---
41
+
42
+ # YOLOv8 Cargo Package Counter
43
+
44
+ This repository contains a YOLOv8-based model trained to detect and count cargo packages, forklifts, and trucks in images. The model was trained on a custom dataset with three classes: `cargo-package`, `forklift`, and `truck`. It can be used for various cargo logistics and package counting tasks.
45
+
46
+ ## Model Description
47
+
48
+ YOLOv8 is a state-of-the-art object detection architecture, known for its speed and accuracy. This model was trained using a custom dataset containing images of cargo packages, forklifts, and trucks, making it specialized for logistics and transportation industries.
49
+
50
+ - **Model Architecture**: YOLOv8
51
+ - **Number of Classes**: 3 (`cargo-package`, `forklift`, `truck`)
52
+ - **Training**: The model was trained using both `best.pt` (the best performing model during training) and `last.pt` (the final checkpoint).
53
+ - **Use Case**: Object detection and counting of cargo packages, forklifts, and trucks in warehouses, transportation hubs, or logistics centers.
54
+
55
+ ## How to Use
56
+
57
+ You can load the model using the `ultralytics` library, as shown below:
58
+
59
+ ```python
60
+ from ultralytics import YOLO
61
+
62
+ # Load the model from Hugging Face
63
+ model = YOLO('https://huggingface.co/your-username/yolov8-cargo-package-counter/resolve/main/best.pt')
64
+
65
+ # Run inference on an image
66
+ results = model('path_to_image.jpg')
67
+
68
+ # Display the results
69
+ results.show()