---
library_name: sklearn
tags:
- sklearn
- skops
- tabular-regression
model_format: pickle
model_file: hw4_mmcar25_regressor_mean.pkl
widget:
- structuredData:
households:
- 269.0
- 497.30152169829046
- 246.0
housing_median_age:
- 49.0
- 31.0
- 17.0
latitude:
- 37.76
- 38.51
- 32.85
longitude:
- -119.56751209527354
- -121.51
- -115.57
median_income:
- 1.7056
- 3.8606044456845234
- 1.7411
ocean_proximity_<1H OCEAN:
- 0.0
- 0.0
- 0.4444029850746269
ocean_proximity_INLAND:
- 0.0
- 1.0
- 1.0
ocean_proximity_ISLAND:
- 0.0
- 0.0
- 0.0
ocean_proximity_NEAR BAY:
- 1.0
- 0.0
- 0.0
ocean_proximity_NEAR OCEAN:
- 0.0
- 0.12823846225276256
- 0.0
population:
- 790.0
- 542.0
- 728.0
total_bedrooms:
- 282.0
- 217.0
- 256.0
total_rooms:
- 1368.0
- 1595.0
- 2637.9451292983595
---
# Model description
[More Information Needed]
## Intended uses & limitations
[More Information Needed]
## Training Procedure
[More Information Needed]
### Hyperparameters
Click to expand
| Hyperparameter | Value |
|--------------------------|---------------|
| bootstrap | True |
| ccp_alpha | 0.0 |
| criterion | squared_error |
| max_depth | |
| max_features | 1.0 |
| max_leaf_nodes | |
| max_samples | |
| min_impurity_decrease | 0.0 |
| min_samples_leaf | 1 |
| min_samples_split | 2 |
| min_weight_fraction_leaf | 0.0 |
| monotonic_cst | |
| n_estimators | 100 |
| n_jobs | |
| oob_score | False |
| random_state | |
| verbose | 0 |
| warm_start | False |
RandomForestRegressor()In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
RandomForestRegressor()