--- license: apache-2.0 base_model: distilbert/distilbert-base-uncased-finetuned-sst-2-english tags: - generated_from_trainer metrics: - accuracy model-index: - name: sucidal-text-classification-distillbert results: [] --- # sucidal-text-classification-distillbert This model is a fine-tuned version of [distilbert/distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert/distilbert-base-uncased-finetuned-sst-2-english) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4590 - Accuracy: 0.8198 - F1 Score: 0.8198 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Score | |:-------------:|:------:|:----:|:---------------:|:--------:|:--------:| | 0.3602 | 0.1885 | 500 | 0.7867 | 0.7670 | 0.7670 | | 0.6285 | 0.3769 | 1000 | 0.5574 | 0.7795 | 0.7795 | | 0.5624 | 0.5654 | 1500 | 0.5011 | 0.7988 | 0.7988 | | 0.5413 | 0.7539 | 2000 | 0.4968 | 0.8017 | 0.8017 | | 0.5084 | 0.9423 | 2500 | 0.4712 | 0.8085 | 0.8085 | | 0.4253 | 1.1308 | 3000 | 0.4938 | 0.8053 | 0.8053 | | 0.3915 | 1.3193 | 3500 | 0.4781 | 0.8136 | 0.8136 | | 0.3739 | 1.5077 | 4000 | 0.5195 | 0.8043 | 0.8043 | | 0.3638 | 1.6962 | 4500 | 0.4790 | 0.8201 | 0.8201 | | 0.3667 | 1.8847 | 5000 | 0.4590 | 0.8198 | 0.8198 | | 0.3182 | 2.0731 | 5500 | 0.5129 | 0.8218 | 0.8218 | | 0.2325 | 2.2616 | 6000 | 0.5279 | 0.8198 | 0.8198 | | 0.2318 | 2.4501 | 6500 | 0.5368 | 0.8197 | 0.8197 | | 0.2219 | 2.6385 | 7000 | 0.5606 | 0.8221 | 0.8221 | | 0.2261 | 2.8270 | 7500 | 0.5406 | 0.8229 | 0.8229 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1