prd101-wd commited on
Commit
e11e029
verified
1 Parent(s): 63de70c

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +147 -0
README.md ADDED
@@ -0,0 +1,147 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: mit
4
+ base_model: microsoft/phi-1_5
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - bitext/Bitext-retail-banking-llm-chatbot-training-dataset
9
+ model-index:
10
+ - name: workspace/outputs/phi-bankingqa-out5
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
18
+ <details><summary>See axolotl config</summary>
19
+
20
+ axolotl version: `0.10.0.dev0`
21
+ ```yaml
22
+ base_model: microsoft/phi-1_5
23
+ # optionally might have model_type or tokenizer_type
24
+ model_type: AutoModelForCausalLM
25
+ tokenizer_type: AutoTokenizer
26
+ # Automatically upload checkpoint and final model to HF
27
+ # hub_model_id: username/custom_model_name
28
+
29
+ load_in_8bit: false
30
+ load_in_4bit: true
31
+
32
+ datasets:
33
+ - #path: garage-bAInd/Open-Platypus
34
+ path: /workspace/data/alpaca_corrected_bankingqa.jsonl
35
+ type: alpaca
36
+
37
+ dataset_prepared_path:
38
+ val_set_size: 0.1
39
+ output_dir: /workspace/outputs/phi-bankingqa-out5
40
+
41
+
42
+ sequence_len: 1024 #reduced to hasten training
43
+ sample_packing: true
44
+ pad_to_sequence_len: true
45
+
46
+ #axolotl own suggestion
47
+ eval_sample_packing: False
48
+
49
+ adapter: qlora
50
+ #lora_model_dir:
51
+ lora_r: 16
52
+ lora_alpha: 16
53
+ lora_dropout: 0.05
54
+ lora_target_linear: true
55
+
56
+ wandb_project: phi1.5-bankingqa-finetune
57
+ wandb_entity:
58
+ wandb_watch:
59
+ wandb_name:
60
+ wandb_log_model:
61
+
62
+ gradient_accumulation_steps: 8 #increase to hasten training
63
+ micro_batch_size: 4
64
+ gradient_checkpointing: true #added to hasten training
65
+ num_epochs: 1
66
+ optimizer: adamw_torch_fused
67
+ adam_beta2: 0.95
68
+ adam_epsilon: 0.00001
69
+ max_grad_norm: 1.0
70
+ lr_scheduler: cosine
71
+ weight_decay: 0.01 # added to hasten training
72
+ learning_rate: 0.0002
73
+
74
+ bf16: auto
75
+ #tf32: true
76
+
77
+ gradient_checkpointing: true
78
+ gradient_checkpointing_kwargs:
79
+ use_reentrant: True
80
+ resume_from_checkpoint:
81
+ logging_steps: 1
82
+ #flash_attention: true
83
+ flash_attention: false
84
+
85
+ warmup_steps: 100
86
+ evals_per_epoch: 4
87
+ saves_per_epoch: 1
88
+ weight_decay: 0.1
89
+ resize_token_embeddings_to_32x: true
90
+ special_tokens:
91
+ pad_token: "<|endoftext|>"
92
+ ```
93
+
94
+ </details><br>
95
+
96
+ # workspace/outputs/phi-bankingqa-out5
97
+
98
+ This model is a fine-tuned version of [microsoft/phi-1_5](https://huggingface.co/microsoft/phi-1_5) on the /workspace/data/alpaca_corrected_bankingqa.jsonl dataset.
99
+ It achieves the following results on the evaluation set:
100
+ - Loss: 1.1071
101
+
102
+ ## Model description
103
+
104
+ More information needed
105
+
106
+ ## Intended uses & limitations
107
+
108
+ More information needed
109
+
110
+ ## Training and evaluation data
111
+
112
+ More information needed
113
+
114
+ ## Training procedure
115
+
116
+ ### Training hyperparameters
117
+
118
+ The following hyperparameters were used during training:
119
+ - learning_rate: 0.0002
120
+ - train_batch_size: 4
121
+ - eval_batch_size: 4
122
+ - seed: 42
123
+ - gradient_accumulation_steps: 8
124
+ - total_train_batch_size: 32
125
+ - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.95) and epsilon=1e-05 and optimizer_args=No additional optimizer arguments
126
+ - lr_scheduler_type: cosine
127
+ - lr_scheduler_warmup_steps: 100
128
+ - num_epochs: 1.0
129
+
130
+ ### Training results
131
+
132
+ | Training Loss | Epoch | Step | Validation Loss |
133
+ |:-------------:|:------:|:----:|:---------------:|
134
+ | 2.8635 | 0.0208 | 1 | 1.2920 |
135
+ | 2.8745 | 0.2494 | 12 | 1.2862 |
136
+ | 2.7446 | 0.4987 | 24 | 1.2616 |
137
+ | 2.4361 | 0.7481 | 36 | 1.1899 |
138
+ | 2.0611 | 0.9974 | 48 | 1.1071 |
139
+
140
+
141
+ ### Framework versions
142
+
143
+ - PEFT 0.15.2
144
+ - Transformers 4.51.3
145
+ - Pytorch 2.5.1+cu124
146
+ - Datasets 3.5.0
147
+ - Tokenizers 0.21.1