--- library_name: transformers license: mit base_model: microsoft/phi-1_5 tags: - generated_from_trainer datasets: - bitext/Bitext-retail-banking-llm-chatbot-training-dataset model-index: - name: workspace/outputs/phi-bankingqa-out5 results: [] language: - en pipeline_tag: question-answering --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.10.0.dev0` ```yaml base_model: microsoft/phi-1_5 # optionally might have model_type or tokenizer_type model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer # Automatically upload checkpoint and final model to HF # hub_model_id: username/custom_model_name load_in_8bit: false load_in_4bit: true datasets: - #path: garage-bAInd/Open-Platypus path: /workspace/data/alpaca_corrected_bankingqa.jsonl type: alpaca dataset_prepared_path: val_set_size: 0.1 output_dir: /workspace/outputs/phi-bankingqa-out5 sequence_len: 1024 #reduced to hasten training sample_packing: true pad_to_sequence_len: true #axolotl own suggestion eval_sample_packing: False adapter: qlora #lora_model_dir: lora_r: 16 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true wandb_project: phi1.5-bankingqa-finetune wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 8 #increase to hasten training micro_batch_size: 4 gradient_checkpointing: true #added to hasten training num_epochs: 1 optimizer: adamw_torch_fused adam_beta2: 0.95 adam_epsilon: 0.00001 max_grad_norm: 1.0 lr_scheduler: cosine weight_decay: 0.01 # added to hasten training learning_rate: 0.0002 bf16: auto #tf32: true gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: True resume_from_checkpoint: logging_steps: 1 #flash_attention: true flash_attention: false warmup_steps: 100 evals_per_epoch: 4 saves_per_epoch: 1 weight_decay: 0.1 resize_token_embeddings_to_32x: true special_tokens: pad_token: "<|endoftext|>" ```

# workspace/outputs/phi-bankingqa-out5 This model is a fine-tuned version of [microsoft/phi-1_5](https://huggingface.co/microsoft/phi-1_5) on the /workspace/data/alpaca_corrected_bankingqa.jsonl dataset. It achieves the following results on the evaluation set: - Loss: 1.1071 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.95) and epsilon=1e-05 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.8635 | 0.0208 | 1 | 1.2920 | | 2.8745 | 0.2494 | 12 | 1.2862 | | 2.7446 | 0.4987 | 24 | 1.2616 | | 2.4361 | 0.7481 | 36 | 1.1899 | | 2.0611 | 0.9974 | 48 | 1.1071 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.5.1+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1