---
library_name: transformers
license: mit
base_model: microsoft/phi-1_5
tags:
- generated_from_trainer
datasets:
- bitext/Bitext-retail-banking-llm-chatbot-training-dataset
model-index:
- name: workspace/outputs/phi-bankingqa-out5
results: []
language:
- en
pipeline_tag: question-answering
---
[
](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.10.0.dev0`
```yaml
base_model: microsoft/phi-1_5
# optionally might have model_type or tokenizer_type
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name
load_in_8bit: false
load_in_4bit: true
datasets:
- #path: garage-bAInd/Open-Platypus
path: /workspace/data/alpaca_corrected_bankingqa.jsonl
type: alpaca
dataset_prepared_path:
val_set_size: 0.1
output_dir: /workspace/outputs/phi-bankingqa-out5
sequence_len: 1024 #reduced to hasten training
sample_packing: true
pad_to_sequence_len: true
#axolotl own suggestion
eval_sample_packing: False
adapter: qlora
#lora_model_dir:
lora_r: 16
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
wandb_project: phi1.5-bankingqa-finetune
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 8 #increase to hasten training
micro_batch_size: 4
gradient_checkpointing: true #added to hasten training
num_epochs: 1
optimizer: adamw_torch_fused
adam_beta2: 0.95
adam_epsilon: 0.00001
max_grad_norm: 1.0
lr_scheduler: cosine
weight_decay: 0.01 # added to hasten training
learning_rate: 0.0002
bf16: auto
#tf32: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: True
resume_from_checkpoint:
logging_steps: 1
#flash_attention: true
flash_attention: false
warmup_steps: 100
evals_per_epoch: 4
saves_per_epoch: 1
weight_decay: 0.1
resize_token_embeddings_to_32x: true
special_tokens:
pad_token: "<|endoftext|>"
```
# workspace/outputs/phi-bankingqa-out5
This model is a fine-tuned version of [microsoft/phi-1_5](https://huggingface.co/microsoft/phi-1_5) on the /workspace/data/alpaca_corrected_bankingqa.jsonl dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1071
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.95) and epsilon=1e-05 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 1.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.8635 | 0.0208 | 1 | 1.2920 |
| 2.8745 | 0.2494 | 12 | 1.2862 |
| 2.7446 | 0.4987 | 24 | 1.2616 |
| 2.4361 | 0.7481 | 36 | 1.1899 |
| 2.0611 | 0.9974 | 48 | 1.1071 |
### Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.5.1+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1