--- library_name: transformers license: mit base_model: unsloth/whisper-large-v3-turbo tags: - generated_from_trainer datasets: - haitian-creole-asr metrics: - wer model-index: - name: Ayira Large Turbo V3 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Haitian Creole ASR Dataset type: haitian-creole-asr args: 'language: ht, split: train' metrics: - name: Wer type: wer value: 5.613132085970648 --- # Ayira Large Turbo V3 This model is a fine-tuned version of [unsloth/whisper-large-v3-turbo](https://huggingface.co/unsloth/whisper-large-v3-turbo) on the Haitian Creole ASR Dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.2041 - Wer: 5.6131 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.0906 | 2.9499 | 1000 | 0.1945 | 15.4483 | | 0.0296 | 5.8997 | 2000 | 0.1862 | 6.4095 | | 0.0032 | 8.8496 | 3000 | 0.1946 | 5.6375 | | 0.0004 | 11.7994 | 4000 | 0.2041 | 5.6131 | ### Framework versions - Transformers 4.52.4 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1