pritamdeb68 commited on
Commit
0d24b4c
·
verified ·
1 Parent(s): 56fad9d

Upload BertForSequenceClassification

Browse files
Files changed (2) hide show
  1. README.md +120 -81
  2. config.json +1 -1
README.md CHANGED
@@ -1,160 +1,199 @@
1
  ---
2
  library_name: transformers
3
- tags:
4
- - AI text detection
5
- - human vs AI classification
6
- - BERT fine-tuning
7
- - Human vs AI text classification
8
- license: mit
9
- language:
10
- - en
11
- metrics:
12
- - accuracy
13
- base_model:
14
- - google-bert/bert-base-uncased
15
  ---
16
- # Model Card for BERT AI Detector
 
 
 
 
 
17
 
18
  ## Model Details
19
 
20
  ### Model Description
21
 
22
- This model is a fine-tuned BERT designed to classify text as either AI-generated or human-written. The model was trained on data from the [Kaggle LLM Detect competition](https://www.kaggle.com/competitions/llm-detect-ai-generated-text/data) using variable-length text inputs ranging from 5 to 100 words. The fine-tuned model achieves high accuracy in identifying the source of the text, making it a valuable tool for detecting AI-generated content.
 
 
 
 
 
 
 
 
 
 
23
 
24
- - **Developed by:** Pritam
25
- - **Language(s) (NLP):** English
26
- - **License:** Apache 2.0
27
- - **Finetuned from model:** BERT (base-uncased)
28
 
29
- ### Model Sources
30
 
31
- - **Repository:** [Hugging Face Model Card](https://huggingface.co/pritam2014/BERTAIDetector)
32
- - **Demo:** [Streamlit Interface](https://huggingface.co/spaces/pritam2014/BERTAIDetector)
 
33
 
34
  ## Uses
35
 
 
 
36
  ### Direct Use
37
 
38
- The model is intended for use in detecting whether text is AI-generated or human-written. Users can input text snippets into the demo or directly integrate the model into their applications for automated content classification.
 
 
39
 
40
- ### Downstream Use
41
 
42
- Potential downstream uses include:
43
 
44
- - Moderating AI-generated content in online platforms.
45
- - Academic and journalistic content verification.
46
- - Detecting plagiarism or misuse of AI writing tools.
47
 
48
  ### Out-of-Scope Use
49
 
50
- The model is not suitable for:
51
 
52
- - Detecting deeply paraphrased AI-generated text.
53
- - Analysis of languages other than English.
54
- - Scenarios where fairness and bias considerations are critical, as those have not been explicitly addressed.
55
 
56
  ## Bias, Risks, and Limitations
57
 
58
- ### Recommendations
59
 
60
- Users should be aware that:
61
 
62
- - The model may not perform well on text heavily modified from AI-generated content.
63
- - It may produce false positives or false negatives due to the inherent limitations of the dataset or model architecture.
64
 
65
- ## How to Get Started with the Model
66
 
67
- Use the following code snippet to load the model:
68
 
69
- ```python
70
- from transformers import AutoTokenizer, AutoModelForSequenceClassification
71
 
72
- tokenizer = AutoTokenizer.from_pretrained("pritamdeb68/BERTAIDetector")
73
- model = AutoModelForSequenceClassification.from_pretrained("pritamdeb68/BERTAIDetector")
74
 
75
- text = "Your text here"
76
- inputs = tokenizer(text, return_tensors="pt")
77
- outputs = model(**inputs)
78
- predictions = outputs.logits.argmax(dim=1).item()
79
- print("AI-generated" if predictions == 1 else "Human-written")
80
- ```
81
 
82
  ## Training Details
83
 
84
  ### Training Data
85
 
86
- The training dataset was sourced from the [Kaggle LLM Detect competition](https://www.kaggle.com/competitions/llm-detect-ai-generated-text/data). The data includes examples of both AI-generated and human-written text, spanning various input lengths (5-100 words).
 
 
87
 
88
  ### Training Procedure
89
 
90
- #### Preprocessing
 
 
 
 
91
 
92
- - Text was tokenized using BERT's tokenizer.
93
- - Input lengths ranged between 5 and 100 words, padded or truncated as necessary.
94
 
95
  #### Training Hyperparameters
96
 
97
- - **Batch Size:** 300
98
- - **Optimizer:** AdamW
99
- - **Learning Rate:** 1e-5
100
- - **Epochs:** 1
101
 
102
- #### Speeds, Sizes, Times
103
 
104
- - **Training Time:** 1 hour 10 minutes
105
- - **Hardware Used:** GPU (Kaggle T4 x 2)
106
- - **Loss:** 0.10 on train data
107
 
108
  ## Evaluation
109
 
 
 
110
  ### Testing Data, Factors & Metrics
111
 
112
  #### Testing Data
113
 
114
- Validation data from the Kaggle competition was used for evaluation.
 
 
 
 
 
 
 
 
115
 
116
  #### Metrics
117
 
118
- - **Accuracy:** 96.52% on validation data.
 
 
119
 
120
  ### Results
121
 
122
- The model achieved high accuracy and low validation loss, demonstrating its effectiveness for the task of AI text detection.
 
 
 
 
 
 
 
 
 
 
123
 
124
  ## Environmental Impact
125
 
126
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute):
 
 
127
 
128
- - **Hardware Type:** Kaggle T4 (x2) GPU
129
- - **Training Duration:** 1 hour 10 minutes
130
- - **Compute Region:** Not specified
 
 
131
 
132
- ## Technical Specifications
133
 
134
  ### Model Architecture and Objective
135
 
136
- - **Model Architecture:** BERT (base-uncased) fine-tuned for text classification.
137
- - **Objective:** Binary classification of text into AI-generated or human-written categories.
138
 
139
  ### Compute Infrastructure
140
 
 
 
141
  #### Hardware
142
 
143
- - **Type:** Kaggle T4(x2) GPU
144
 
145
  #### Software
146
 
147
- - **Framework:** PyTorch with Transformers library
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
148
 
149
- ## Citation
150
 
151
- If you use this model, please cite the repository:
152
 
153
- ```
154
- @inproceedings{pritam2024bertaidetector,
155
- title={BERT AI Detector},
156
- author={Pritam},
157
- year={2024},
158
- url={https://huggingface.co/pritam2014/BERTAIDetector}
159
- }
160
- ```
 
1
  ---
2
  library_name: transformers
3
+ tags: []
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
+ ### Model Sources [optional]
 
 
 
29
 
30
+ <!-- Provide the basic links for the model. -->
31
 
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
  ### Direct Use
41
 
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
 
46
+ ### Downstream Use [optional]
47
 
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
+ [More Information Needed]
 
 
51
 
52
  ### Out-of-Scope Use
53
 
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
+ [More Information Needed]
 
 
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
+ [More Information Needed]
63
 
64
+ ### Recommendations
 
65
 
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
+ ## How to Get Started with the Model
 
71
 
72
+ Use the code below to get started with the model.
 
73
 
74
+ [More Information Needed]
 
 
 
 
 
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
 
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
 
84
  ### Training Procedure
85
 
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
 
 
 
92
 
93
  #### Training Hyperparameters
94
 
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
 
98
 
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
 
101
+ [More Information Needed]
 
 
102
 
103
  ## Evaluation
104
 
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
  ### Testing Data, Factors & Metrics
108
 
109
  #### Testing Data
110
 
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
 
121
  #### Metrics
122
 
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
 
127
  ### Results
128
 
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
 
141
  ## Environmental Impact
142
 
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
 
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
 
153
+ ## Technical Specifications [optional]
154
 
155
  ### Model Architecture and Objective
156
 
157
+ [More Information Needed]
 
158
 
159
  ### Compute Infrastructure
160
 
161
+ [More Information Needed]
162
+
163
  #### Hardware
164
 
165
+ [More Information Needed]
166
 
167
  #### Software
168
 
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
 
195
+ [More Information Needed]
196
 
197
+ ## Model Card Contact
198
 
199
+ [More Information Needed]
 
 
 
 
 
 
 
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "pritam2014/BERTAIDetector",
3
  "architectures": [
4
  "BertForSequenceClassification"
5
  ],
 
1
  {
2
+ "_name_or_path": "pritamdeb68/BERTAIDetector",
3
  "architectures": [
4
  "BertForSequenceClassification"
5
  ],