Debopam Dey
commited on
Update README.md
Browse files
README.md
CHANGED
|
@@ -34,7 +34,48 @@ This is the model card of a 🤗 transformers model that has been pushed on the
|
|
| 34 |
- **Demo [optional]:** [More Information Needed]
|
| 35 |
|
| 36 |
## Uses
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 39 |
|
| 40 |
### Direct Use
|
|
|
|
| 34 |
- **Demo [optional]:** [More Information Needed]
|
| 35 |
|
| 36 |
## Uses
|
| 37 |
+
```
|
| 38 |
+
from transformers import BertTokenizer, BertForSequenceClassification
|
| 39 |
+
|
| 40 |
+
# Load the model and tokenizer from the Hugging Face model hub
|
| 41 |
+
mymodel = BertForSequenceClassification.from_pretrained("pritam2014/SentimentBERT")
|
| 42 |
+
mytokenizer = BertTokenizer.from_pretrained("bert-base-uncased",use_auth_token=True)
|
| 43 |
+
```
|
| 44 |
+
```
|
| 45 |
+
def preprocess_text(text):
|
| 46 |
+
# Preprocess the input text
|
| 47 |
+
inputs = mytokenizer.encode_plus(
|
| 48 |
+
text,
|
| 49 |
+
max_length=512,
|
| 50 |
+
padding='max_length',
|
| 51 |
+
truncation=True,
|
| 52 |
+
return_attention_mask=True,
|
| 53 |
+
return_tensors='pt'
|
| 54 |
+
)
|
| 55 |
+
return inputs
|
| 56 |
+
```
|
| 57 |
+
```
|
| 58 |
+
def make_prediction(text):
|
| 59 |
+
# Preprocess the input text
|
| 60 |
+
inputs = preprocess_text(text)
|
| 61 |
+
|
| 62 |
+
# Make predictions using the loaded model
|
| 63 |
+
with torch.no_grad():
|
| 64 |
+
outputs = mymodel(inputs['input_ids'], attention_mask=inputs['attention_mask'])
|
| 65 |
+
logits = outputs.logits
|
| 66 |
+
predicted_class_id = torch.argmax(logits).item()
|
| 67 |
+
|
| 68 |
+
# Map the predicted class ID to a sentiment label
|
| 69 |
+
sentiment_labels = {0: 'Negative', 1: 'Positive'}
|
| 70 |
+
predicted_sentiment = sentiment_labels[predicted_class_id]
|
| 71 |
+
|
| 72 |
+
return predicted_sentiment
|
| 73 |
+
```
|
| 74 |
+
```
|
| 75 |
+
text = "I love this product"
|
| 76 |
+
predicted_sentiment = make_prediction(text)
|
| 77 |
+
print(predicted_sentiment)
|
| 78 |
+
```
|
| 79 |
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 80 |
|
| 81 |
### Direct Use
|