Update README.md
Browse files
README.md
CHANGED
@@ -11,3 +11,94 @@ tags:
|
|
11 |
- text-generation-inference
|
12 |
---
|
13 |

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
- text-generation-inference
|
12 |
---
|
13 |

|
14 |
+
# **Tokenized-OCR**
|
15 |
+
|
16 |
+
**Tokenized-OCR** is an advanced OCR-based text extraction tool optimized for generating structured, tokenized outputs. Built upon a powerful vision-language architecture with enhanced OCR and multilingual support, Tokenized-OCR accurately extracts text from images and returns it as a comma-separated sequence.
|
17 |
+
|
18 |
+
#### Key Enhancements:
|
19 |
+
|
20 |
+
* **Advanced OCR Engine**: Fine-tuned on extensive datasets, Tokenized-OCR ensures precise text recognition and tokenization.
|
21 |
+
* **Optimized for Tokenized Output**: Produces structured comma-separated text, making it ideal for downstream NLP tasks, automation pipelines, and database integrations.
|
22 |
+
* **Enhanced Multilingual OCR**: Supports text extraction in multiple languages, including English, Chinese, Japanese, Korean, Arabic, and more.
|
23 |
+
* **Multimodal Processing**: Seamlessly processes both image and text inputs, providing structured tokenized outputs.
|
24 |
+
* **Secure and Optimized Model Weights**: Employs safetensors for efficient and secure model loading.
|
25 |
+
|
26 |
+
### How to Use
|
27 |
+
|
28 |
+
```python
|
29 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
|
30 |
+
from qwen_vl_utils import process_vision_info
|
31 |
+
|
32 |
+
# Load the Tokenized-OCR model with optimized parameters
|
33 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
34 |
+
"prithivMLmods/Tokenized-OCR", torch_dtype="auto", device_map="auto"
|
35 |
+
)
|
36 |
+
|
37 |
+
# Recommended acceleration for performance optimization:
|
38 |
+
# model = Qwen2VLForConditionalGeneration.from_pretrained(
|
39 |
+
# "prithivMLmods/Tokenized-OCR",
|
40 |
+
# torch_dtype=torch.bfloat16,
|
41 |
+
# attn_implementation="flash_attention_2",
|
42 |
+
# device_map="auto",
|
43 |
+
# )
|
44 |
+
|
45 |
+
# Load the default processor for Tokenized-OCR
|
46 |
+
processor = AutoProcessor.from_pretrained("prithivMLmods/Tokenized-OCR")
|
47 |
+
|
48 |
+
# Define the input messages with both an image and a text prompt
|
49 |
+
messages = [
|
50 |
+
{
|
51 |
+
"role": "user",
|
52 |
+
"content": [
|
53 |
+
{
|
54 |
+
"type": "image",
|
55 |
+
"image": "https://flux-generated.com/sample_image.jpeg",
|
56 |
+
},
|
57 |
+
{"type": "text", "text": "Extract and return the tokenized OCR text from the image, ensuring each word is accurately recognized and separated by commas."},
|
58 |
+
],
|
59 |
+
}
|
60 |
+
]
|
61 |
+
|
62 |
+
# Prepare the input for inference
|
63 |
+
text = processor.apply_chat_template(
|
64 |
+
messages, tokenize=False, add_generation_prompt=True
|
65 |
+
)
|
66 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
67 |
+
inputs = processor(
|
68 |
+
text=[text],
|
69 |
+
images=image_inputs,
|
70 |
+
videos=video_inputs,
|
71 |
+
padding=True,
|
72 |
+
return_tensors="pt",
|
73 |
+
)
|
74 |
+
inputs = inputs.to("cuda")
|
75 |
+
|
76 |
+
# Generate the output
|
77 |
+
generated_ids = model.generate(**inputs, max_new_tokens=256)
|
78 |
+
generated_ids_trimmed = [
|
79 |
+
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
80 |
+
]
|
81 |
+
output_text = processor.batch_decode(
|
82 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
83 |
+
)
|
84 |
+
print(output_text)
|
85 |
+
```
|
86 |
+
|
87 |
+
### **Key Features**
|
88 |
+
|
89 |
+
1. **High-Accuracy OCR Processing**
|
90 |
+
- Extracts and tokenizes text from images with exceptional precision.
|
91 |
+
|
92 |
+
2. **Multilingual Text Recognition**
|
93 |
+
- Supports multiple languages, ensuring comprehensive OCR capabilities.
|
94 |
+
|
95 |
+
3. **Comma-Separated Tokenized Output**
|
96 |
+
- Generates structured text for seamless NLP and data processing tasks.
|
97 |
+
|
98 |
+
4. **Efficient Image & Text Processing**
|
99 |
+
- Handles both visual and textual inputs, ensuring accurate OCR-based extraction.
|
100 |
+
|
101 |
+
5. **Optimized for Secure Deployment**
|
102 |
+
- Uses safetensors for enhanced security and model efficiency.
|
103 |
+
|
104 |
+
**Tokenized-OCR** revolutionizes text extraction from images, providing tokenized outputs that are easy to integrate into automated workflows, search engines, and language processing applications.
|