--- license: apache-2.0 language: - en - zh base_model: - prithivMLmods/Qwen2-VL-OCR-2B-Instruct pipeline_tag: image-to-text library_name: transformers tags: - text-generation-inference - bpe - ocr --- # **Bpe-vocab-n-OCR** ![bpe.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/f3-ZGWYpFHmRn7L-hSvtt.png) **Bpe-vocab-n-OCR** is an advanced OCR-based text extraction tool optimized for generating structured, tokenized outputs. Built upon a powerful vision-language architecture with enhanced OCR and multilingual support, Bpe-vocab-n-OCR accurately extracts text from images and returns it as a comma-separated sequence. #### Key Enhancements: * **Advanced OCR Engine**: Fine-tuned on extensive datasets, Bpe-vocab-n-OCR ensures precise text recognition and tokenization. * **Optimized for Tokenized Output**: Produces structured comma-separated text, making it ideal for downstream NLP tasks, automation pipelines, and database integrations. * **Enhanced Multilingual OCR**: Supports text extraction in multiple languages, including English, Chinese, Japanese, Korean, Arabic, and more. * **Multimodal Processing**: Seamlessly processes both image and text inputs, providing structured tokenized outputs. * **Secure and Optimized Model Weights**: Employs safetensors for efficient and secure model loading. ![sdsdfsd.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/XT1Qe2WxVzclETv6Rmgfs.png) ### How to Use ```python from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor from qwen_vl_utils import process_vision_info # Load the Bpe-vocab-n-OCR model with optimized parameters model = Qwen2VLForConditionalGeneration.from_pretrained( "prithivMLmods/Tokenized-OCR", torch_dtype="auto", device_map="auto" ) # Recommended acceleration for performance optimization: # model = Qwen2VLForConditionalGeneration.from_pretrained( # "prithivMLmods/Tokenized-OCR", # torch_dtype=torch.bfloat16, # attn_implementation="flash_attention_2", # device_map="auto", # ) # Load the default processor for Bpe-vocab-n-OCR processor = AutoProcessor.from_pretrained("prithivMLmods/Tokenized-OCR") # Define the input messages with both an image and a text prompt messages = [ { "role": "user", "content": [ { "type": "image", "image": "https://flux-generated.com/sample_image.jpeg", }, {"type": "text", "text": "Extract and return the tokenized OCR text from the image, ensuring each word is accurately recognized and separated by commas."}, ], } ] # Prepare the input for inference text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to("cuda") # Generate the output generated_ids = model.generate(**inputs, max_new_tokens=256) generated_ids_trimmed = [ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) print(output_text) ``` ### **Key Features** 1. **High-Accuracy OCR Processing** * Extracts and tokenizes text from images with exceptional precision. 2. **Multilingual Text Recognition** * Supports multiple languages, ensuring comprehensive OCR capabilities. 3. **Comma-Separated Tokenized Output** * Generates structured text for seamless NLP and data processing tasks. 4. **Efficient Image & Text Processing** * Handles both visual and textual inputs, ensuring accurate OCR-based extraction. 5. **Optimized for Secure Deployment** * Uses safetensors for enhanced security and model efficiency.