Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
- zh
|
6 |
+
library_name: transformers
|
7 |
+
base_model:
|
8 |
+
- Qwen/Qwen2.5-VL-7B-Instruct
|
9 |
+
pipeline_tag: image-text-to-text
|
10 |
+
tags:
|
11 |
+
- trl
|
12 |
+
- VisionLanguageAttribution
|
13 |
+
- VisualUnderstanding
|
14 |
+
- text-generation-inference
|
15 |
+
- AttributeCaptioning
|
16 |
+
- VLA
|
17 |
+
datasets:
|
18 |
+
- prithivMLmods/blip3o-caption-mini-arrow
|
19 |
+
- prithivMLmods/Caption3o-Opt-v3
|
20 |
+
- prithivMLmods/Caption3o-Opt-v2
|
21 |
+
- >-
|
22 |
+
Multimodal-Fatima/Caltech101_not_background_test_facebook_opt_2.7b_Attributes_Caption_ns_5647
|
23 |
+
---
|
24 |
+
|
25 |
+

|
26 |
+
|
27 |
+
# **DeepCaption-VLA-7B**
|
28 |
+
|
29 |
+
> The **DeepCaption-VLA-7B** model is a fine-tuned version of **Qwen2.5-VL-7B-Instruct**, tailored for **Image Captioning** and **Vision Language Attribution**. This variant is designed to generate precise, highly descriptive captions with a focus on **defining visual properties, object attributes, and scene details** across a wide spectrum of images and aspect ratios.
|
30 |
+
|
31 |
+
# Key Highlights
|
32 |
+
|
33 |
+
1. **Vision Language Attribution (VLA):** Specially fine-tuned to attribute and define visual properties of objects, scenes, and environments.
|
34 |
+
2. **Detailed Object Definitions:** Generates captions with rich attribute descriptions, making outputs more precise than generic captioners.
|
35 |
+
3. **High-Fidelity Descriptions:** Handles general, artistic, technical, abstract, and low-context images with descriptive depth.
|
36 |
+
4. **Robust Across Aspect Ratios:** Accurately captions images regardless of format—wide, tall, square, or irregular.
|
37 |
+
5. **Variational Detail Control:** Supports both concise summaries and fine-grained attributions depending on prompt structure.
|
38 |
+
6. **Foundation on Qwen2.5-VL Architecture:** Leverages Qwen2.5-VL-7B’s multimodal reasoning for visual comprehension and instruction-following.
|
39 |
+
7. **Multilingual Capability:** Default in English, but adaptable for multilingual captioning through prompt engineering.
|
40 |
+
|
41 |
+
> model type: experimental
|
42 |
+
|
43 |
+
# Training Details
|
44 |
+
|
45 |
+
This model was fine-tuned with a curated mix of datasets focused on **caption richness and object-attribute alignment**:
|
46 |
+
|
47 |
+
* [prithivMLmods/blip3o-caption-mini-arrow](https://huggingface.co/datasets/prithivMLmods/blip3o-caption-mini-arrow)
|
48 |
+
* [prithivMLmods/Caption3o-Opt-v3](https://huggingface.co/datasets/prithivMLmods/Caption3o-Opt-v3)
|
49 |
+
* [prithivMLmods/Caption3o-Opt-v2](https://huggingface.co/datasets/prithivMLmods/Caption3o-Opt-v2)
|
50 |
+
* [Multimodal-Fatima/Caltech101\_not\_background\_test\_facebook\_opt\_2.7b\_Attributes\_Caption\_ns\_5647](https://huggingface.co/datasets/Multimodal-Fatima/Caltech101_not_background_test_facebook_opt_2.7b_Attributes_Caption_ns_5647)
|
51 |
+
|
52 |
+
The training objective emphasized **Vision Language Attribution**: defining image properties, attributes, and objects with clarity, while preserving descriptive fluency.
|
53 |
+
|
54 |
+
---
|
55 |
+
|
56 |
+
## SYSTEM_PROMPT
|
57 |
+
|
58 |
+
```py
|
59 |
+
CAPTION_SYSTEM_PROMPT = """
|
60 |
+
You are an AI assistant that rigorously follows this response protocol:
|
61 |
+
|
62 |
+
1. For every input image, your primary task is to write a **precise caption**. The caption must capture the **essence of the image** in clear, concise, and contextually accurate language.
|
63 |
+
|
64 |
+
2. Along with the caption, provide a structured set of **attributes** that describe the visual elements. Attributes should include details such as objects, people, actions, colors, environment, mood, and other notable characteristics.
|
65 |
+
|
66 |
+
3. Always include a **class_name** field. This must represent the **core theme or main subject** of the image in a compact format.
|
67 |
+
- Use the syntax: `{class_name==write_the_core_theme}`
|
68 |
+
- Example: `{class_name==dog_playing}` or `{class_name==city_sunset}`
|
69 |
+
|
70 |
+
4. Maintain the following strict format in your output:
|
71 |
+
- **Caption:** <one-sentence description>
|
72 |
+
- **Attributes:** <comma-separated list of visual attributes>
|
73 |
+
- **{class_name==core_theme}**
|
74 |
+
|
75 |
+
5. Ensure captions are **precise, neutral, and descriptive**, avoiding unnecessary elaboration or subjective interpretation unless explicitly required.
|
76 |
+
|
77 |
+
6. Do not reference the rules or instructions in the output. Only return the formatted caption, attributes, and class_name.
|
78 |
+
|
79 |
+
""".strip()
|
80 |
+
```
|
81 |
+
|
82 |
+
---
|
83 |
+
|
84 |
+
# Quick Start with Transformers
|
85 |
+
|
86 |
+
```python
|
87 |
+
from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor
|
88 |
+
from qwen_vl_utils import process_vision_info
|
89 |
+
|
90 |
+
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
91 |
+
"prithivMLmods/DeepCaption-VLA-7B", torch_dtype="auto", device_map="auto"
|
92 |
+
)
|
93 |
+
|
94 |
+
processor = AutoProcessor.from_pretrained("prithivMLmods/DeepCaption-VLA-7B")
|
95 |
+
|
96 |
+
messages = [
|
97 |
+
{
|
98 |
+
"role": "user",
|
99 |
+
"content": [
|
100 |
+
{
|
101 |
+
"type": "image",
|
102 |
+
"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
|
103 |
+
},
|
104 |
+
{"type": "text", "text": "Describe this image with detailed attributes and properties."},
|
105 |
+
],
|
106 |
+
}
|
107 |
+
]
|
108 |
+
|
109 |
+
text = processor.apply_chat_template(
|
110 |
+
messages, tokenize=False, add_generation_prompt=True
|
111 |
+
)
|
112 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
113 |
+
inputs = processor(
|
114 |
+
text=[text],
|
115 |
+
images=image_inputs,
|
116 |
+
videos=video_inputs,
|
117 |
+
padding=True,
|
118 |
+
return_tensors="pt",
|
119 |
+
)
|
120 |
+
inputs = inputs.to("cuda")
|
121 |
+
|
122 |
+
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
123 |
+
generated_ids_trimmed = [
|
124 |
+
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
125 |
+
]
|
126 |
+
output_text = processor.batch_decode(
|
127 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
128 |
+
)
|
129 |
+
print(output_text)
|
130 |
+
```
|
131 |
+
|
132 |
+
# Intended Use
|
133 |
+
|
134 |
+
* Generating attribute-rich image captions for research, dataset creation, and AI training.
|
135 |
+
* Vision-language attribution for object detection, scene understanding, and dataset annotation.
|
136 |
+
* Supporting creative, artistic, and technical applications requiring detailed descriptions.
|
137 |
+
* Captioning across varied aspect ratios, unusual visual styles, and non-standard datasets.
|
138 |
+
|
139 |
+
# Limitations
|
140 |
+
|
141 |
+
* May over-attribute or infer properties not explicitly visible in ambiguous images.
|
142 |
+
* Outputs can vary in tone depending on prompt phrasing.
|
143 |
+
* Not intended for filtered captioning tasks (explicit or sensitive content may appear).
|
144 |
+
* Accuracy may degrade on synthetic or highly abstract visual domains.
|