--- license: apache-2.0 language: - en base_model: - google/siglip2-base-patch16-224 pipeline_tag: image-classification library_name: transformers tags: - gender - fashion - product --- ![16.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/1rf5M6UtlzkYJOeFx0yTQ.png) # **Fashion-Product-Gender** > **Fashion-Product-Gender** is a vision model fine-tuned from **google/siglip2-base-patch16-224** using the **SiglipForImageClassification** architecture. It classifies fashion product images into one of five gender categories. ```py Classification Report: precision recall f1-score support Boys 0.4127 0.0940 0.1531 830 Girls 0.5000 0.0061 0.0121 655 Men 0.7506 0.8393 0.7925 22104 Unisex 0.5714 0.0188 0.0364 2126 Women 0.7317 0.7609 0.7460 18357 accuracy 0.7407 44072 macro avg 0.5933 0.3438 0.3480 44072 weighted avg 0.7240 0.7407 0.7130 44072 ``` The model predicts one of the following gender categories for fashion products: - **0:** Boys - **1:** Girls - **2:** Men - **3:** Unisex - **4:** Women --- # **Run with Transformers 🤗** ```python !pip install -q transformers torch pillow gradio ``` ```python import gradio as gr from transformers import AutoImageProcessor, SiglipForImageClassification from PIL import Image import torch # Load model and processor model_name = "prithivMLmods/Fashion-Product-Gender" # Replace with your actual model path model = SiglipForImageClassification.from_pretrained(model_name) processor = AutoImageProcessor.from_pretrained(model_name) # Label mapping id2label = { 0: "Boys", 1: "Girls", 2: "Men", 3: "Unisex", 4: "Women" } def classify_gender(image): """Predicts the gender category for a fashion product.""" image = Image.fromarray(image).convert("RGB") inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() predictions = {id2label[i]: round(probs[i], 3) for i in range(len(probs))} return predictions # Gradio interface iface = gr.Interface( fn=classify_gender, inputs=gr.Image(type="numpy"), outputs=gr.Label(label="Gender Prediction Scores"), title="Fashion-Product-Gender", description="Upload a fashion product image to predict the target gender category (Boys, Girls, Men, Unisex, Women)." ) # Launch the app if __name__ == "__main__": iface.launch() ``` --- # **Intended Use** This model is best suited for: - **Fashion E-commerce tagging and search** - **Personalized recommendations based on gender** - **Catalog organization and gender-based filters** - **Retail analytics and demographic insights**