Update README.md
Browse files
README.md
CHANGED
@@ -2,6 +2,10 @@
|
|
2 |
license: apache-2.0
|
3 |
---
|
4 |
|
|
|
|
|
|
|
|
|
5 |
```py
|
6 |
Classification Report:
|
7 |
precision recall f1-score support
|
@@ -14,4 +18,76 @@ Classification Report:
|
|
14 |
accuracy 0.7121 44072
|
15 |
macro avg 0.7742 0.6965 0.7289 44072
|
16 |
weighted avg 0.7174 0.7121 0.7103 44072
|
17 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: apache-2.0
|
3 |
---
|
4 |
|
5 |
+
# **Fashion-Product-Season**
|
6 |
+
|
7 |
+
> **Fashion-Product-Season** is a vision-language model fine-tuned from **google/siglip2-base-patch16-224** using the **SiglipForImageClassification** architecture. It classifies fashion product images based on their suitable **season of use**.
|
8 |
+
|
9 |
```py
|
10 |
Classification Report:
|
11 |
precision recall f1-score support
|
|
|
18 |
accuracy 0.7121 44072
|
19 |
macro avg 0.7742 0.6965 0.7289 44072
|
20 |
weighted avg 0.7174 0.7121 0.7103 44072
|
21 |
+
```
|
22 |
+
The model predicts one of the following **season categories**:
|
23 |
+
|
24 |
+
- **0:** Fall
|
25 |
+
- **1:** Spring
|
26 |
+
- **2:** Summer
|
27 |
+
- **3:** Winter
|
28 |
+
|
29 |
+
---
|
30 |
+
|
31 |
+
# **Run with Transformers 🤗**
|
32 |
+
|
33 |
+
```python
|
34 |
+
!pip install -q transformers torch pillow gradio
|
35 |
+
```
|
36 |
+
|
37 |
+
```python
|
38 |
+
import gradio as gr
|
39 |
+
from transformers import AutoImageProcessor, SiglipForImageClassification
|
40 |
+
from PIL import Image
|
41 |
+
import torch
|
42 |
+
|
43 |
+
# Load model and processor
|
44 |
+
model_name = "prithivMLmods/Fashion-Product-Season" # Replace with your actual model path
|
45 |
+
model = SiglipForImageClassification.from_pretrained(model_name)
|
46 |
+
processor = AutoImageProcessor.from_pretrained(model_name)
|
47 |
+
|
48 |
+
# Label mapping
|
49 |
+
id2label = {
|
50 |
+
0: "Fall",
|
51 |
+
1: "Spring",
|
52 |
+
2: "Summer",
|
53 |
+
3: "Winter"
|
54 |
+
}
|
55 |
+
|
56 |
+
def classify_season(image):
|
57 |
+
"""Predicts the most suitable season for a fashion product."""
|
58 |
+
image = Image.fromarray(image).convert("RGB")
|
59 |
+
inputs = processor(images=image, return_tensors="pt")
|
60 |
+
|
61 |
+
with torch.no_grad():
|
62 |
+
outputs = model(**inputs)
|
63 |
+
logits = outputs.logits
|
64 |
+
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
|
65 |
+
|
66 |
+
predictions = {id2label[i]: round(probs[i], 3) for i in range(len(probs))}
|
67 |
+
predictions = dict(sorted(predictions.items(), key=lambda item: item[1], reverse=True))
|
68 |
+
return predictions
|
69 |
+
|
70 |
+
# Gradio interface
|
71 |
+
iface = gr.Interface(
|
72 |
+
fn=classify_season,
|
73 |
+
inputs=gr.Image(type="numpy"),
|
74 |
+
outputs=gr.Label(label="Season Prediction Scores"),
|
75 |
+
title="Fashion-Product-Season",
|
76 |
+
description="Upload a fashion product image to predict its most suitable season (Fall, Spring, Summer, Winter)."
|
77 |
+
)
|
78 |
+
|
79 |
+
# Launch the app
|
80 |
+
if __name__ == "__main__":
|
81 |
+
iface.launch()
|
82 |
+
```
|
83 |
+
|
84 |
+
---
|
85 |
+
|
86 |
+
# **Intended Use**
|
87 |
+
|
88 |
+
This model can be used for:
|
89 |
+
|
90 |
+
- **Seasonal tagging in fashion e-commerce**
|
91 |
+
- **Improved recommendations for seasonal shopping trends**
|
92 |
+
- **Inventory planning based on product seasonality**
|
93 |
+
- **Data labeling for fashion-specific recommendation engines**
|