--- license: apache-2.0 language: - en --- ![tregsd.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/f-YpJJbkFilf4Q2gJA9SM.png) # **Fashion-Product-Season** > **Fashion-Product-Season** is a vision-language model fine-tuned from **google/siglip2-base-patch16-224** using the **SiglipForImageClassification** architecture. It classifies fashion product images based on their suitable **season of use**. ```py Classification Report: precision recall f1-score support Fall 0.6173 0.5655 0.5903 11414 Spring 0.9738 0.7665 0.8578 2711 Summer 0.7051 0.8107 0.7542 21438 Winter 0.8007 0.6432 0.7134 8509 accuracy 0.7121 44072 macro avg 0.7742 0.6965 0.7289 44072 weighted avg 0.7174 0.7121 0.7103 44072 ``` The model predicts one of the following **season categories**: - **0:** Fall - **1:** Spring - **2:** Summer - **3:** Winter --- # **Run with Transformers 🤗** ```python !pip install -q transformers torch pillow gradio ``` ```python import gradio as gr from transformers import AutoImageProcessor, SiglipForImageClassification from PIL import Image import torch # Load model and processor model_name = "prithivMLmods/Fashion-Product-Season" # Replace with your actual model path model = SiglipForImageClassification.from_pretrained(model_name) processor = AutoImageProcessor.from_pretrained(model_name) # Label mapping id2label = { 0: "Fall", 1: "Spring", 2: "Summer", 3: "Winter" } def classify_season(image): """Predicts the most suitable season for a fashion product.""" image = Image.fromarray(image).convert("RGB") inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() predictions = {id2label[i]: round(probs[i], 3) for i in range(len(probs))} predictions = dict(sorted(predictions.items(), key=lambda item: item[1], reverse=True)) return predictions # Gradio interface iface = gr.Interface( fn=classify_season, inputs=gr.Image(type="numpy"), outputs=gr.Label(label="Season Prediction Scores"), title="Fashion-Product-Season", description="Upload a fashion product image to predict its most suitable season (Fall, Spring, Summer, Winter)." ) # Launch the app if __name__ == "__main__": iface.launch() ``` --- # **Intended Use** This model can be used for: - **Seasonal tagging in fashion e-commerce** - **Improved recommendations for seasonal shopping trends** - **Inventory planning based on product seasonality** - **Data labeling for fashion-specific recommendation engines**