Update README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,9 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
|
|
|
|
|
|
4 |
|
5 |
```py
|
6 |
Classification Report:
|
@@ -18,4 +21,84 @@ Smart Casual 0.0000 0.0000 0.0000 67
|
|
18 |
accuracy 0.8458 44072
|
19 |
macro avg 0.3912 0.2762 0.3024 44072
|
20 |
weighted avg 0.8300 0.8458 0.8159 44072
|
21 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
4 |
+
# **Fashion-Product-Usage**
|
5 |
+
|
6 |
+
> **Fashion-Product-Usage** is a vision-language model fine-tuned from **google/siglip2-base-patch16-224** using the **SiglipForImageClassification** architecture. It classifies fashion product images based on their intended usage context.
|
7 |
|
8 |
```py
|
9 |
Classification Report:
|
|
|
21 |
accuracy 0.8458 44072
|
22 |
macro avg 0.3912 0.2762 0.3024 44072
|
23 |
weighted avg 0.8300 0.8458 0.8159 44072
|
24 |
+
```
|
25 |
+
|
26 |
+
The model predicts one of the following usage categories:
|
27 |
+
|
28 |
+
- **0:** Casual
|
29 |
+
- **1:** Ethnic
|
30 |
+
- **2:** Formal
|
31 |
+
- **3:** Home
|
32 |
+
- **4:** Party
|
33 |
+
- **5:** Smart Casual
|
34 |
+
- **6:** Sports
|
35 |
+
- **7:** Travel
|
36 |
+
|
37 |
+
---
|
38 |
+
|
39 |
+
# **Run with Transformers 🤗**
|
40 |
+
|
41 |
+
```python
|
42 |
+
!pip install -q transformers torch pillow gradio
|
43 |
+
```
|
44 |
+
|
45 |
+
```python
|
46 |
+
import gradio as gr
|
47 |
+
from transformers import AutoImageProcessor, SiglipForImageClassification
|
48 |
+
from PIL import Image
|
49 |
+
import torch
|
50 |
+
|
51 |
+
# Load model and processor
|
52 |
+
model_name = "prithivMLmods/Fashion-Product-Usage" # Replace with your actual model path
|
53 |
+
model = SiglipForImageClassification.from_pretrained(model_name)
|
54 |
+
processor = AutoImageProcessor.from_pretrained(model_name)
|
55 |
+
|
56 |
+
# Label mapping
|
57 |
+
id2label = {
|
58 |
+
0: "Casual",
|
59 |
+
1: "Ethnic",
|
60 |
+
2: "Formal",
|
61 |
+
3: "Home",
|
62 |
+
4: "Party",
|
63 |
+
5: "Smart Casual",
|
64 |
+
6: "Sports",
|
65 |
+
7: "Travel"
|
66 |
+
}
|
67 |
+
|
68 |
+
def classify_usage(image):
|
69 |
+
"""Predicts the usage type of a fashion product."""
|
70 |
+
image = Image.fromarray(image).convert("RGB")
|
71 |
+
inputs = processor(images=image, return_tensors="pt")
|
72 |
+
|
73 |
+
with torch.no_grad():
|
74 |
+
outputs = model(**inputs)
|
75 |
+
logits = outputs.logits
|
76 |
+
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
|
77 |
+
|
78 |
+
predictions = {id2label[i]: round(probs[i], 3) for i in range(len(probs))}
|
79 |
+
return predictions
|
80 |
+
|
81 |
+
# Gradio interface
|
82 |
+
iface = gr.Interface(
|
83 |
+
fn=classify_usage,
|
84 |
+
inputs=gr.Image(type="numpy"),
|
85 |
+
outputs=gr.Label(label="Usage Prediction Scores"),
|
86 |
+
title="Fashion-Product-Usage",
|
87 |
+
description="Upload a fashion product image to predict its intended usage (Casual, Formal, Party, etc.)."
|
88 |
+
)
|
89 |
+
|
90 |
+
# Launch the app
|
91 |
+
if __name__ == "__main__":
|
92 |
+
iface.launch()
|
93 |
+
```
|
94 |
+
|
95 |
+
---
|
96 |
+
|
97 |
+
# **Intended Use**
|
98 |
+
|
99 |
+
This model can be used for:
|
100 |
+
|
101 |
+
- **Product tagging in e-commerce catalogs**
|
102 |
+
- **Context-aware product recommendations**
|
103 |
+
- **Fashion search optimization**
|
104 |
+
- **Data annotation for training recommendation engines**
|