prithivMLmods commited on
Commit
d432d2d
·
verified ·
1 Parent(s): 35fd07b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +88 -0
README.md CHANGED
@@ -13,6 +13,9 @@ tags:
13
  - Classcode
14
  - '10'
15
  ---
 
 
 
16
 
17
  ```py
18
  Classification Report:
@@ -35,3 +38,88 @@ Genshin Impact 0.9831 0.9890 0.9860 1000
35
  ```
36
 
37
  ![download.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/mI7DFpu3kJ6V3EOiJII39.png)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  - Classcode
14
  - '10'
15
  ---
16
+ # **Gameplay-Classcode-10**
17
+
18
+ > **Gameplay-Classcode-10** is a vision-language model fine-tuned from **google/siglip2-base-patch16-224** using the **SiglipForImageClassification** architecture. It classifies gameplay screenshots or thumbnails into one of ten popular video game titles.
19
 
20
  ```py
21
  Classification Report:
 
38
  ```
39
 
40
  ![download.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/mI7DFpu3kJ6V3EOiJII39.png)
41
+
42
+ The model predicts one of the following **game categories**:
43
+
44
+ - **0:** Among Us
45
+ - **1:** Apex Legends
46
+ - **2:** Fortnite
47
+ - **3:** Forza Horizon
48
+ - **4:** Free Fire
49
+ - **5:** Genshin Impact
50
+ - **6:** God of War
51
+ - **7:** Minecraft
52
+ - **8:** Roblox
53
+ - **9:** Terraria
54
+
55
+ ---
56
+
57
+ # **Run with Transformers 🤗**
58
+
59
+ ```python
60
+ !pip install -q transformers torch pillow gradio
61
+ ```
62
+
63
+ ```python
64
+ import gradio as gr
65
+ from transformers import AutoImageProcessor, SiglipForImageClassification
66
+ from PIL import Image
67
+ import torch
68
+
69
+ # Load model and processor
70
+ model_name = "prithivMLmods/Gameplay-Classcode-10" # Replace with your actual model path
71
+ model = SiglipForImageClassification.from_pretrained(model_name)
72
+ processor = AutoImageProcessor.from_pretrained(model_name)
73
+
74
+ # Label mapping
75
+ id2label = {
76
+ 0: "Among Us",
77
+ 1: "Apex Legends",
78
+ 2: "Fortnite",
79
+ 3: "Forza Horizon",
80
+ 4: "Free Fire",
81
+ 5: "Genshin Impact",
82
+ 6: "God of War",
83
+ 7: "Minecraft",
84
+ 8: "Roblox",
85
+ 9: "Terraria"
86
+ }
87
+
88
+ def classify_game(image):
89
+ """Predicts the game title based on the gameplay image."""
90
+ image = Image.fromarray(image).convert("RGB")
91
+ inputs = processor(images=image, return_tensors="pt")
92
+
93
+ with torch.no_grad():
94
+ outputs = model(**inputs)
95
+ logits = outputs.logits
96
+ probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
97
+
98
+ predictions = {id2label[i]: round(probs[i], 3) for i in range(len(probs))}
99
+ predictions = dict(sorted(predictions.items(), key=lambda item: item[1], reverse=True))
100
+ return predictions
101
+
102
+ # Gradio interface
103
+ iface = gr.Interface(
104
+ fn=classify_game,
105
+ inputs=gr.Image(type="numpy"),
106
+ outputs=gr.Label(label="Game Prediction Scores"),
107
+ title="Gameplay-Classcode-10",
108
+ description="Upload a gameplay screenshot or thumbnail to identify the game title (Among Us, Fortnite, Minecraft, etc.)."
109
+ )
110
+
111
+ # Launch the app
112
+ if __name__ == "__main__":
113
+ iface.launch()
114
+ ```
115
+
116
+ ---
117
+
118
+ # **Intended Use**
119
+
120
+ This model can be used for:
121
+
122
+ - **Automatic tagging of gameplay content for streamers and creators**
123
+ - **Organizing gaming datasets**
124
+ - **Enhancing searchability in gameplay video repositories**
125
+ - **Training AI systems for game-related content moderation or recommendations**