prithivMLmods commited on
Commit
1393418
·
verified ·
1 Parent(s): 7c63e30

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +70 -173
README.md CHANGED
@@ -1,199 +1,96 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
- ## Model Details
 
13
 
14
- ### Model Description
 
15
 
16
- <!-- Provide a longer summary of what this model is. -->
 
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
 
 
 
 
 
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
 
 
 
 
 
 
 
 
39
 
40
- ### Direct Use
 
 
 
 
 
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
 
 
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
 
51
 
52
- ### Out-of-Scope Use
 
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
 
55
 
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - text-generation-inference
5
+ - Math
6
+ - Code
7
+ - Thinker
8
+ license: apache-2.0
9
+ language:
10
+ - en
11
+ - zh
12
+ base_model:
13
+ - Qwen/Qwen2.5-1.5B-Instruct
14
+ pipeline_tag: text-generation
15
  ---
16
 
17
+ ![Thinker.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/fAOdz1WFMBNJdQM2UNEBe.png)
18
 
19
+ # **Gamma-Velorum-1.5B-Thinker**
20
 
21
+ > **Gamma-Velorum-1.5B-Thinker** is a **math and code reasoning model** fine-tuned from **Qwen2.5-1.5B**, crafted to tackle complex **mathematical** and **programming** problems using **chain-of-thought** methodology. It excels in **step-by-step explanations**, long-context understanding, and bilingual support — ideal for education, coding tutors, and logic-intensive applications.
22
 
23
+ ## **Key Features**
24
 
25
+ 1. **Math + Code Chain-of-Thought Reasoning**
26
+ Trained to provide detailed, structured steps for both **mathematical** and **coding** problems. Gamma-Velorum-1.5B-Thinker explains not just the what, but the *why*, ensuring clarity in logic and computation.
27
 
28
+ 2. **Backed by Qwen2.5-1.5B**
29
+ Built on the latest Qwen2.5 architecture, bringing improved accuracy, reasoning capabilities, and enhanced tokenizer efficiency.
30
 
31
+ 3. **Long-Context Problem Solving**
32
+ Capable of handling **long multi-turn questions**, nested logic, and extended code/math scenarios — ideal for competitive exams or coding challenges.
33
 
34
+ 4. **Bilingual (English + Chinese)**
35
+ Seamlessly understands and reasons through prompts in both **English** and **Simplified Chinese**, making it versatile for global education platforms.
36
 
37
+ 5. **Efficient and Lightweight**
38
+ With only 1.5B parameters, it strikes a balance between **performance and deployability**, suitable for web, edge, and mobile environments.
 
 
 
 
 
39
 
40
+ ## **Quickstart with Transformers**
41
 
42
+ ```python
43
+ from transformers import AutoModelForCausalLM, AutoTokenizer
44
 
45
+ model_name = "prithivMLmods/Gamma-Velorum-1.5B-Thinker"
 
 
46
 
47
+ model = AutoModelForCausalLM.from_pretrained(
48
+ model_name,
49
+ torch_dtype="auto",
50
+ device_map="auto"
51
+ )
52
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
53
 
54
+ prompt = "Write a Python function to calculate factorial of a number."
55
+ messages = [
56
+ {"role": "system", "content": "You are a helpful tutor skilled in math and programming. Explain solutions step-by-step."},
57
+ {"role": "user", "content": prompt}
58
+ ]
59
+ text = tokenizer.apply_chat_template(
60
+ messages,
61
+ tokenize=False,
62
+ add_generation_prompt=True
63
+ )
64
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
65
 
66
+ generated_ids = model.generate(
67
+ **model_inputs,
68
+ max_new_tokens=512
69
+ )
70
+ generated_ids = [
71
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
72
+ ]
73
 
74
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
75
+ ```
76
 
77
+ ## **Intended Use**
78
 
79
+ - **Math & Coding Tutors**: Solves word problems, algebra, logic puzzles, and programming challenges with clarity and precision.
80
+ - **Bilingual EdTech Apps**: Explains both math and code in English and Chinese for a broader learning reach.
81
+ - **STEM Reasoning Engines**: Powers scientific reasoning tools, code-assist bots, and step-by-step logic solvers.
82
+ - **Lightweight LLM Use Cases**: Browser-based, embedded systems, or mobile apps for learners and developers.
83
 
84
+ ## **Limitations**
85
 
86
+ 1. **Domain Focused**:
87
+ Optimized for **STEM and code** tasks — general conversation or abstract creative writing may not be as strong.
88
 
89
+ 2. **Scale Limitations**:
90
+ As a 1.5B parameter model, it may not match larger models on highly complex logic or long-form generation.
91
 
92
+ 3. **Bias Inheritance**:
93
+ Carries forward biases from its Qwen2.5 base model — important for sensitive contexts.
94
 
95
+ 4. **Prompt Structuring Matters**:
96
+ Performs best with explicit, structured prompts for math/code. Ambiguous or casual phrasing may reduce accuracy.