prithivMLmods commited on
Commit
7117b01
·
verified ·
1 Parent(s): b501d6e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +105 -0
README.md CHANGED
@@ -13,3 +13,108 @@ tags:
13
  - flux
14
  ---
15
  ![9.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/esgwb8sdL5LbyDuQFLWnT.png)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  - flux
14
  ---
15
  ![9.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/esgwb8sdL5LbyDuQFLWnT.png)
16
+ # **JSONify-Flux-Large**
17
+
18
+ The **JSONify-Flux-Large** model is a fine-tuned version of **Qwen2VL**, specifically trained on **Flux-generated images** and their **corresponding captions**. This model has been trained using a **30M trainable parameter** dataset and is designed to output responses in structured **JSON format** while maintaining state-of-the-art performance in **Optical Character Recognition (OCR)**, **image-to-text conversion**, and **math problem-solving with LaTeX formatting**.
19
+
20
+ ### Key Enhancements:
21
+
22
+ * **Optimized for Flux-Generated Image Captioning**: JSONify-Flux-Large has been trained to understand and describe images created using Flux-based generation techniques.
23
+
24
+ * **State-of-the-Art Image Understanding**: Built on Qwen2VL's architecture, JSONify-Flux-Large excels in visual reasoning tasks like DocVQA, RealWorldQA, MTVQA, and more.
25
+
26
+ * **Formatted JSON Output**: Responses are structured in a JSON format, making it ideal for automation, database storage, and further processing.
27
+
28
+ * **Multilingual Support**: Recognizes and extracts text from images in multiple languages, including English, Chinese, Japanese, Arabic, and various European languages.
29
+
30
+ * **Supports Multi-Turn Interactions**: Maintains context in conversations and can provide extended reasoning over multiple inputs.
31
+
32
+ ### How to Use
33
+
34
+ ```python
35
+ from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
36
+ from qwen_vl_utils import process_vision_info
37
+
38
+ # Load the model on the available device(s)
39
+ model = Qwen2VLForConditionalGeneration.from_pretrained(
40
+ "prithivMLmods/JSONify-Flux-Large", torch_dtype="auto", device_map="auto"
41
+ )
42
+
43
+ # Enable flash_attention_2 for better acceleration and memory efficiency
44
+ # model = Qwen2VLForConditionalGeneration.from_pretrained(
45
+ # "prithivMLmods/JSONify-Flux-Large",
46
+ # torch_dtype=torch.bfloat16,
47
+ # attn_implementation="flash_attention_2",
48
+ # device_map="auto",
49
+ # )
50
+
51
+ # Default processor
52
+ processor = AutoProcessor.from_pretrained("prithivMLmods/JSONify-Flux-Large")
53
+
54
+ messages = [
55
+ {
56
+ "role": "user",
57
+ "content": [
58
+ {
59
+ "type": "image",
60
+ "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
61
+ },
62
+ {"type": "text", "text": "Describe this image in JSON format."},
63
+ ],
64
+ }
65
+ ]
66
+
67
+ # Prepare inputs for inference
68
+ text = processor.apply_chat_template(
69
+ messages, tokenize=False, add_generation_prompt=True
70
+ )
71
+ image_inputs, video_inputs = process_vision_info(messages)
72
+ inputs = processor(
73
+ text=[text],
74
+ images=image_inputs,
75
+ videos=video_inputs,
76
+ padding=True,
77
+ return_tensors="pt",
78
+ )
79
+ inputs = inputs.to("cuda")
80
+
81
+ # Inference: Generate JSON-formatted output
82
+ generated_ids = model.generate(**inputs, max_new_tokens=128)
83
+ generated_ids_trimmed = [
84
+ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
85
+ ]
86
+ output_text = processor.batch_decode(
87
+ generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
88
+ )
89
+
90
+ print(output_text) # JSON-formatted response
91
+ ```
92
+
93
+ ### JSON Buffer Handling
94
+ ```python
95
+ buffer = ""
96
+ for new_text in streamer:
97
+ buffer += new_text
98
+ buffer = buffer.replace("<|im_end|>", "")
99
+ yield buffer
100
+ ```
101
+
102
+ ### **Key Features**
103
+
104
+ 1. **Flux-Based Vision-Language Model**:
105
+ - Specifically trained on **Flux-generated images and captions** for precise image-to-text conversion.
106
+
107
+ 2. **Optical Character Recognition (OCR)**:
108
+ - Extracts and processes text from images with high accuracy.
109
+
110
+ 3. **Math and LaTeX Support**:
111
+ - Solves math problems and outputs equations in **LaTeX format**.
112
+
113
+ 4. **Structured JSON Output**:
114
+ - Ensures outputs are formatted in JSON, making it suitable for API responses and automation tasks.
115
+
116
+ 5. **Multi-Image and Video Understanding**:
117
+ - Supports analyzing multiple images and video content up to **20 minutes long**.
118
+
119
+ 6. **Secure Weight Format**:
120
+ - Uses **Safetensors** for enhanced security and faster model loading.