prithivMLmods commited on
Commit
998f41a
·
verified ·
1 Parent(s): 86fbedf

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +118 -3
README.md CHANGED
@@ -1,3 +1,118 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - open-r1/Mixture-of-Thoughts
5
+ - nvidia/OpenCodeReasoning
6
+ language:
7
+ - en
8
+ base_model:
9
+ - prithivMLmods/Qwen3-4B-ft-bf16
10
+ pipeline_tag: text-generation
11
+ library_name: transformers
12
+ tags:
13
+ - text-generation-inference
14
+ - moe
15
+ - code
16
+ - math
17
+ - science
18
+ ---
19
+
20
+ # **Lacaille-MoT-4B-Supreme2**
21
+
22
+ > **Lacaille-MoT-4B-Supreme2** is a high-efficiency, multi-domain model fine-tuned on **Qwen3-4B** using the **Mixture of Thoughts (MoT)** dataset enhanced with **code, math, science expert clusters** and an extended **open code reasoning dataset**. This model blends symbolic precision, scientific logic, and structured output fluency—making it an ideal tool for developers, educators, and researchers seeking advanced reasoning under constrained compute.
23
+
24
+ > \[!note]
25
+ > GGUF: [https://huggingface.co/prithivMLmods/Lacaille-MoT-4B-Supreme2-GGUF](https://huggingface.co/prithivMLmods/Lacaille-MoT-4B-Supreme2-GGUF)
26
+
27
+ ---
28
+
29
+ ## **Key Features**
30
+
31
+ 1. **Unified Reasoning Across Code, Math & Science**
32
+ Fine-tuned on **MoT expert clusters** spanning programming, mathematics, and scientific logic, alongside an **open code reasoning dataset**, boosting multi-modal symbolic reasoning.
33
+
34
+ 2. **Advanced Code Reasoning & Generation**
35
+ Supports multi-language coding with explanations, optimization hints, and error detection—ideal for full-stack prototyping, algorithm synthesis, and debugging workflows.
36
+
37
+ 3. **Scientific Problem Solving**
38
+ Performs analytical reasoning in physics, biology, and chemistry—explaining concepts, solving equations, and handling symbolic derivations step-by-step.
39
+
40
+ 4. **Hybrid Symbolic-AI Thinking**
41
+ Combines structured logic, chain-of-thought reasoning, and open-ended inference, delivering robust performance on STEM tasks and complex prompt decomposition.
42
+
43
+ 5. **Structured Output Mastery**
44
+ Seamlessly generates output in **LaTeX**, **Markdown**, **JSON**, **CSV**, and **YAML**, suited for research reports, technical documentation, and data formats.
45
+
46
+ 6. **Optimized 4B Footprint for Versatile Deployment**
47
+ Strikes a balance between performance and efficiency, making it deployable on **mid-range GPUs**, **offline clusters**, and advanced **edge AI systems**.
48
+
49
+ ---
50
+
51
+ ## **Quickstart with Transformers**
52
+
53
+ ```python
54
+ from transformers import AutoModelForCausalLM, AutoTokenizer
55
+
56
+ model_name = "prithivMLmods/Lacaille-MoT-4B-Supreme2"
57
+
58
+ model = AutoModelForCausalLM.from_pretrained(
59
+ model_name,
60
+ torch_dtype="auto",
61
+ device_map="auto"
62
+ )
63
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
64
+
65
+ prompt = "Explain the difference between Newtonian mechanics and quantum mechanics with examples."
66
+
67
+ messages = [
68
+ {"role": "system", "content": "You are a scientific tutor skilled in code, math, and reasoning."},
69
+ {"role": "user", "content": prompt}
70
+ ]
71
+
72
+ text = tokenizer.apply_chat_template(
73
+ messages,
74
+ tokenize=False,
75
+ add_generation_prompt=True
76
+ )
77
+
78
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
79
+
80
+ generated_ids = model.generate(
81
+ **model_inputs,
82
+ max_new_tokens=512
83
+ )
84
+ generated_ids = [
85
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
86
+ ]
87
+
88
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
89
+ print(response)
90
+ ```
91
+
92
+ ---
93
+
94
+ ## **Intended Use**
95
+
96
+ * Scientific tutoring, computational logic, and mathematical education
97
+ * Advanced coding assistant for algorithm design, code reviews, and documentation
98
+ * Structured technical data generation across formats and fields
99
+ * STEM-focused chatbot or API for research and education tools
100
+ * Mid-resource deployment requiring high symbolic fidelity
101
+
102
+ ---
103
+
104
+ ## **Limitations**
105
+
106
+ * Not tuned for general-purpose or long-form creative writing
107
+ * Context limitations may hinder multi-document or full codebase analysis
108
+ * Specialized in technical and symbolic tasks—general chat may underperform
109
+ * Prioritizes structured reasoning over emotional or casual tone generation
110
+
111
+ ---
112
+
113
+ ## **References**
114
+
115
+ 1. [Qwen2.5 Technical Report (2024)](https://arxiv.org/pdf/2412.15115)
116
+ 2. [YaRN: Efficient Context Window Extension of Large Language Models](https://arxiv.org/pdf/2309.00071)
117
+ 3. [open-r1/Mixture-of-Thoughts](https://huggingface.co/datasets/open-r1/Mixture-of-Thoughts)
118
+ 4. [Open Code Reasoning Dataset (2024)](https://huggingface.co/datasets/nvidia/OpenCodeReasoning)