Update README.md
Browse files
README.md
CHANGED
@@ -2,8 +2,24 @@
|
|
2 |
license: apache-2.0
|
3 |
datasets:
|
4 |
- jonathan-roberts1/RSI-CB256
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
---
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
```py
|
8 |
Classification Report:
|
9 |
precision recall f1-score support
|
@@ -22,3 +38,90 @@ construction land 0.9945 0.9963 0.9954 3791
|
|
22 |
```
|
23 |
|
24 |

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: apache-2.0
|
3 |
datasets:
|
4 |
- jonathan-roberts1/RSI-CB256
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
base_model:
|
8 |
+
- google/siglip-base-patch16-224
|
9 |
+
pipeline_tag: image-classification
|
10 |
+
library_name: transformers
|
11 |
+
tags:
|
12 |
+
- Remote Sensing Instruments
|
13 |
+
- RSI
|
14 |
+
- Location
|
15 |
---
|
16 |
|
17 |
+

|
18 |
+
|
19 |
+
# **RSI-CB256-07**
|
20 |
+
|
21 |
+
> **RSI-CB256-07** is a SigLIP2-based model fine-tuned for **coarse-grained remote sensing land-cover classification**. It distinguishes among 7 essential categories commonly used in environmental, urban planning, and geospatial analysis applications. The model is built on `google/siglip2-base-patch16-256` using the `SiglipForImageClassification` architecture.
|
22 |
+
|
23 |
```py
|
24 |
Classification Report:
|
25 |
precision recall f1-score support
|
|
|
38 |
```
|
39 |
|
40 |

|
41 |
+
|
42 |
+
---
|
43 |
+
|
44 |
+
## **Label Space: 7 Remote Sensing Classes**
|
45 |
+
|
46 |
+
This model predicts one of the following categories for a given satellite or aerial image:
|
47 |
+
|
48 |
+
```
|
49 |
+
Class 0: "transportation"
|
50 |
+
Class 1: "other objects"
|
51 |
+
Class 2: "woodland"
|
52 |
+
Class 3: "water area"
|
53 |
+
Class 4: "other land"
|
54 |
+
Class 5: "cultivated land"
|
55 |
+
Class 6: "construction land"
|
56 |
+
```
|
57 |
+
|
58 |
+
---
|
59 |
+
|
60 |
+
## **Install Dependencies**
|
61 |
+
|
62 |
+
```bash
|
63 |
+
pip install -q transformers torch pillow gradio
|
64 |
+
```
|
65 |
+
|
66 |
+
---
|
67 |
+
|
68 |
+
## **Inference Code**
|
69 |
+
|
70 |
+
```python
|
71 |
+
import gradio as gr
|
72 |
+
from transformers import AutoImageProcessor, SiglipForImageClassification
|
73 |
+
from PIL import Image
|
74 |
+
import torch
|
75 |
+
|
76 |
+
# Load model and processor
|
77 |
+
model_name = "prithivMLmods/RSI-CB256-07"
|
78 |
+
model = SiglipForImageClassification.from_pretrained(model_name)
|
79 |
+
processor = AutoImageProcessor.from_pretrained(model_name)
|
80 |
+
|
81 |
+
# ID to label mapping
|
82 |
+
id2label = {
|
83 |
+
"0": "transportation",
|
84 |
+
"1": "other objects",
|
85 |
+
"2": "woodland",
|
86 |
+
"3": "water area",
|
87 |
+
"4": "other land",
|
88 |
+
"5": "cultivated land",
|
89 |
+
"6": "construction land"
|
90 |
+
}
|
91 |
+
|
92 |
+
def classify_rsi_image(image):
|
93 |
+
image = Image.fromarray(image).convert("RGB")
|
94 |
+
inputs = processor(images=image, return_tensors="pt")
|
95 |
+
|
96 |
+
with torch.no_grad():
|
97 |
+
outputs = model(**inputs)
|
98 |
+
logits = outputs.logits
|
99 |
+
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
|
100 |
+
|
101 |
+
prediction = {
|
102 |
+
id2label[str(i)]: round(probs[i], 3) for i in range(len(probs))
|
103 |
+
}
|
104 |
+
|
105 |
+
return prediction
|
106 |
+
|
107 |
+
# Gradio Interface
|
108 |
+
iface = gr.Interface(
|
109 |
+
fn=classify_rsi_image,
|
110 |
+
inputs=gr.Image(type="numpy"),
|
111 |
+
outputs=gr.Label(num_top_classes=7, label="Predicted Land-Cover Category"),
|
112 |
+
title="RSI-CB256-07",
|
113 |
+
description="Upload a satellite or aerial image to classify it into one of seven coarse land-cover classes using SigLIP2."
|
114 |
+
)
|
115 |
+
|
116 |
+
if __name__ == "__main__":
|
117 |
+
iface.launch()
|
118 |
+
```
|
119 |
+
|
120 |
+
---
|
121 |
+
|
122 |
+
## **Applications**
|
123 |
+
|
124 |
+
* **Urban vs Rural Segmentation**
|
125 |
+
* **Land-Use Classification**
|
126 |
+
* **National/Regional Land Cover Monitoring**
|
127 |
+
* **Environmental Impact Assessment**
|