File size: 39,722 Bytes
a1f2530
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b60225a
a1f2530
 
 
 
 
 
 
013b7a4
4928621
a1f2530
 
 
 
 
 
 
 
 
5f4e279
a1f2530
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4928621
 
581e58b
354a055
2ab2bea
4928621
a1f2530
 
 
 
 
 
 
 
 
 
851c3a1
2396109
a1f2530
7017d06
 
a1f2530
 
 
851c3a1
 
 
 
 
 
 
 
 
 
 
 
 
92da5f0
851c3a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1f2530
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1788cfd
 
9cfa88b
1788cfd
 
 
9cfa88b
a1f2530
1788cfd
a1f2530
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1788cfd
9cfa88b
1788cfd
 
 
 
 
 
a1f2530
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f14b01
a1f2530
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4928621
a1f2530
 
 
 
 
 
 
 
 
 
 
 
 
 
0b7b356
a1f2530
 
 
10cf5b5
a1f2530
 
4928621
1ec2459
4928621
0b7b356
 
10cf5b5
581e58b
0b7b356
 
10cf5b5
b15ef74
 
 
581e58b
 
 
0b7b356
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
---
license: apache-2.0
language:
- en
tags:
- ColBERT
- passage-retrieval
- knowledge-distillation
pretty_name:  Independent Implementation of ColBERTv2.0+ Models - modern_colbert_base_en_v1.
new_version: prithivida/modern_colbert_base_en_v1
---



<center>
<img src="./dost_logo.png" alt="DonkeyStereotype" width="350px">
  <p> Trained by <a href="https://donkeystereotype.com"/>Donkey Stereotype</p>
</center>  
    
<br><br>


# Independent Implementation of ColBERTv2.0+ Models


> <div style="background-color: #dbeafe; padding: 15px; border-radius: 8px; border-left: 4px solid #1e40af;">
> <strong style="color: #1d4ed8;">Background:</strong> 
> <span style="color: #374151;">As part of this project, we will be releasing a set of models across weight classes: 1.) Models that worked well, 2.) Experimental models, including failed attempts. This work stands on the shoulders of all previous robust research on ColBERT and variants.</span>
> </div>
>
> <div style="background-color: #dbeafe; padding: 15px; border-radius: 8px; margin-top: 10px; border-left: 4px solid #2563eb;">
> <strong style="color: #1d4ed8;">What this independent implementation entail?</strong>
> <ul style="color: #374151; margin: 10px 0;">
> <li>This is a humble effort to <span style="color: #dc2626; font-weight: 600;"> independently implement Lighton AI's GTE-ModernColBERT </span>.</li>
> <li> <span style="color: #dc2626; font-weight: 600;"> Without using existing ColBERT libraries  </span>  (or codebase) like PyLate or Stanford's recipe.</li>
> <li> <span style="color: #dc2626; font-weight: 600;"> Without any funding, grand GPU budgets, </span>  or formal research background.</li>
> </ul>
> </div>


As of this writing (2nd July 2025) 

1. <a href="https://huggingface.co/lightonai/GTE-ModernColBERT-v1"> LightOn AI's ColBERT </a> is the best in the world and can be considered SOTA. <br/>
2. **Today we are humbled and thrilled to announce prithivida/modern_colbert_base_en_v1 is the 2nd best ColBERT in the world.**. Borrowing Antoine Chaffin's words - <br/>
   > This is the 2nd model to outperform ColBERT-small on BEIR While it is also bigger, it is still a very lightweight model and benefits from the efficiency of ModernBERT!"


<br/>

# Comparison with Top ColBERTv2.0+ Models

| Dataset / Model | GTE-ModernColBERT<br/>(Lighton AI) | modern_colbert_base_en_v1<br/>(Ours) | ColBERT-small<br/>(Answer AI, reproduced by Lighton) | ColBERT-small<br/>(Answer AI, reported) |
|:-----------------|:-----------------:|:-----------------:|:------------------------:|:------------------------:|
| **Outfit type**     | AI Lab with PhDs <br/>    | Indie Researcher, <br/> No PhD, No GPU budgets :-)      | AI Lab with PhDs                      | AI Lab with PhDs                      |
| **BEIR Average**     | **54.89** (🥇)   | **54.51 (🥈)**       | 53.35                    | 53.79                    |
| **FiQA2018**    | **48.51**         | 43.96             | 41.01                    | 41.15                    |
| **NFCorpus**    | **37.93**         | 37.23             | 36.86                    | 37.3                     |
| **TREC-COVID**  | 83.59             | 83.4             | 83.14                    | **84.59**                |
| **Touche2020**  | **31.23**         | 29.32             | 24.95                    | 25.69                    |
| **ArguAna**     | 48.51             | **52.05**         | 46.76                    | 50.09                    |
| **QuoraRetrieval** | 86.61          | 87.54             | **87.89**                | 87.72                    |
| **SCIDOCS**     | 19.06             | **19.42**         | 18.72                    | 18.42                    |
| **SciFact**     | 76.34             | **76.44**             | 74.02                    | 74.77                    |
| **NQ**          | **61.8**          | 61.68            | 59.42                    | 59.1                     |
| **ClimateFEVER** | 30.62            | 28.29             | 32.83                    | **33.07**                |
| **HotpotQA**    | **77.32**         | 76.667             | 76.88                    | 76.11                    |
| **DBPedia**     | **48.03**         | 46.31             | 46.36                    | 45.58                    |
| **CQADupstack** | 41                | **42.2**         | 39.36                    | 38.75                    |
| **FEVER**       | 87.44             | 88.106             | 88.66                    | **90.96**                |
| **MSMARCO**     | **45.32**         | 44.993             | 43.44                    | 43.5                     |




<ul>
  <li>Turns out a very modest GPU budget, a humble background and high quality hard negative mining is a good strart to independently implement the ColBERT's that are in circulation today.</li>
  <li><a href="https://huggingface.co/prithivida/modern_colbert_base_en_v1/blob/main/beir_eval_results.md">detailed BEIR eval numbers</a></li>
  <li><a href="https://huggingface.co/prithivida/modern_colbert_base_en_v1/blob/main/modernbert_v6_nanobeir_results.tsv">nanoBEIR eval results</a></li>
</ul>

<br/>

# Comparison of with legacy ColBERT models

Both GTE-ModernColBERT and ColBERT-small model cards have this comparison against older Colbert models. please refer to them.

-----



# How to use / Running inference:

- Short term: We are releasing a lib called `[lateness]`(https://github.com/PrithivirajDamodaran/lateness)
- Medium to Long terms: There are really strong storage and retrieval abstractions: VectorDBs like Qdrant, Weaviate or Vespa that support multi-vectors and strong Colbert training libraries like PyLate, So we feel it is best to work the authors and integrate.
For now we offer only code to load the model, run inference and do some light weight in-memory ranking (no heavy lifting like storing and retrieving using FAISS indexes).


## Using modern_colbert to index and query with Vectordb's like Qdrant.


> [!TIP]
> ```python
> pip install lateness # light CPU retrievals
> or
> pip install lateness[index] # GPU accelerated indexing into vdbs
> ```

______

> [!NOTE]
> [Want to locally run qdrant or use in production cluster ? try out an end to end example here](https://github.com/PrithivirajDamodaran/lateness/tree/main/examples/qdrant)

```python
from lateness import ModernColBERT
colbert = ModernColBERT("prithivida/modern_colbert_base_en_v1",
                        max_query_len = 32,
                        max_doc_len = 300)


documents = [
    "PyTorch is an open-source machine learning framework that provides tensor computations with GPU acceleration and deep neural networks built on tape-based autograd system.",
    "Kubernetes is a container orchestration platform that automates deployment, scaling, and management of containerized applications across clusters of machines.",
    "REST APIs follow representational state transfer architectural style using HTTP methods like GET, POST, PUT, DELETE for stateless client-server communication.",
]

queries = [
    "How to build real-time data pipelines?",
    "What are the benefits of microservices?",
    "How to implement efficient web APIs?"
]

query_embeddings = colbert.encode_queries(queries)
doc_embeddings = colbert.encode_documents(documents)
scores = ModernColBERT.compute_similarity(query_embeddings, doc_embeddings)
print(scores)
```


<details>
<summary><b>Click here for inference code using Transformers</b></summary>

> [!TIP]
> Copy paste the next snippet before running the below snippet.

```python
model_path = "prithivida/modern_colbert_base_en_v1"  

try:
    
    colbert = ColBERT.load_for_inference(model_path, max_query_len=32, max_doc_len=300)
    
    # Test data
    queries = [
        "How does deep learning work?",
        "What is machine learning?",
        "What are neural networks?"
    ]
    
    documents = [
        "Machine learning is the idea of approximating a real world phenomenon using data, the approximation can be mathmetical or otherwise.",
        "Deep learning uses neural networks with multiple layers to process data.",
        "Neural networks are computing systems inspired by biological neural networks.",
        "Artificial intelligence encompasses machine learning and deep learning.",
    ]

    # Encode and find similarity
    print("\n=== Encode and Calculate similarity ===")
    q_reps = colbert.encode_queries(queries, batch_size=4, to_cpu=True)
    p_reps = colbert.encode_documents(documents, batch_size=4, to_cpu=True)
    scores = colbert.compute_similarity(q_reps, p_reps)
    print(scores)
    
    # or Test single query ranking
    print("\n=== Single Query Ranking ===")
    query = "How does deep learning work?"
    results = colbert.rank_documents(query, documents, top_k=3)
    
    print(f"Query: {query}")
    for i, (doc_idx, score, doc_text) in enumerate(results):
        print(f"  {i+1}. Score: {score:.4f} | Doc: {doc_text}")
    
    
except Exception as e:
    print(f"Error during testing: {e}")

```


```python
import torch
from torch import nn
from transformers import PreTrainedModel, AutoConfig, AutoModel, AutoTokenizer
from transformers.modeling_outputs import BaseModelOutput
from tqdm import tqdm
from typing import List, Tuple, Union, Optional
import string
import os


class TaggingHead(nn.Module):
    def __init__(self, input_size, num_labels):
        super().__init__()
        self.classifier = nn.Linear(input_size, num_labels, bias=False)
        nn.init.xavier_uniform_(self.classifier.weight)

    def forward(self, x):
        return self.classifier(x)


class ColBERT(PreTrainedModel):
    config_class = AutoConfig
    base_model_prefix = "backbone"
    
    def __init__(self, config):
        super().__init__(config)
        self.backbone = AutoModel.from_config(config)
        hidden_dim = config.hidden_size
        self.heads = nn.ModuleDict({
            "col_pooling": TaggingHead(hidden_dim, num_labels=128)
        })
        
        # Inference settings (will be set when loading for inference)
        self.tokenizer = None
        self.max_query_len = 256
        self.max_doc_len = 300
        self.Q_PID = None
        self.D_PID = None
    
    def _init_weights(self, module):
        if isinstance(module, (nn.Linear, nn.Embedding)):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()
    
    def forward(self, input_ids, attention_mask=None, position_ids=None, return_dict=False, **kwargs):
        kwargs.pop("token_type_ids", None)
        
        outputs = self.backbone(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            return_dict=True,
            **kwargs
        )
        
        reps = outputs.last_hidden_state
        reps = torch.nn.functional.normalize(reps, p=2, dim=2)
        reps *= attention_mask[:, :, None].float()
        logits = self.heads["col_pooling"](reps)
        
        if return_dict:
            return BaseModelOutput(last_hidden_state=logits)
        return logits
    
    @classmethod
    def load_for_inference(cls, model_name_or_path: str, max_query_len: int = 256, 
                          max_doc_len: int = 300, device: str = None):
        """
        Load ColBERT model with tokenizer for inference
        
        Args:
            model_name_or_path: HuggingFace model path or local directory
            max_query_len: Maximum query length
            max_doc_len: Maximum document length
            device: Device to run inference on (auto-detect if None)
        """
        device = device or ("cuda" if torch.cuda.is_available() else "cpu")
        
        try:
            # Load model and tokenizer
            if os.path.exists(model_name_or_path):
                print(f"Loading model from local directory: {model_name_or_path}")
                config = AutoConfig.from_pretrained(model_name_or_path)
                model = cls.from_pretrained(model_name_or_path, config=config)
                tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
            else:
                print(f"Downloading model from HuggingFace Hub: {model_name_or_path}")
                config = AutoConfig.from_pretrained(model_name_or_path)
                model = cls.from_pretrained(model_name_or_path, config=config)
                tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
            
            # Setup inference configuration
            model.tokenizer = tokenizer
            model.max_query_len = max_query_len
            model.max_doc_len = max_doc_len
            model.Q_PID = tokenizer.convert_tokens_to_ids("[unused0]")
            model.D_PID = tokenizer.convert_tokens_to_ids("[unused1]")
            # Setup post-tokenization punctuation masking
            model.skip_ids = {tokenizer.encode(c, add_special_tokens=False)[0]
                             for c in string.punctuation}
            
            model.to(device)
            model.eval()
            
            print(f"ColBERT model loaded on {device}")
            print(f"Query max length: {max_query_len}, Document max length: {max_doc_len}")
            
            return model
            
        except Exception as e:
            print(f"Error loading model: {e}")
            raise
    
    def _encode_batch(self, ids: torch.Tensor, mask: torch.Tensor, to_cpu: bool = False):
        """Internal encoding function"""
        if self.tokenizer is None:
            raise RuntimeError("Model not loaded for inference. Use ColBERT.load_for_inference()")
        
        ids, mask = ids.to(self.device), mask.to(self.device)
        pos = torch.arange(ids.size(1), device=self.device).unsqueeze(0).expand_as(ids)
        
        with torch.no_grad():
            rep = self(input_ids=ids, attention_mask=mask, position_ids=pos)
        
        return rep.cpu() if to_cpu else rep
    
    def encode_queries(self, queries: List[str], batch_size: Optional[int] = None, to_cpu: bool = False):
        """
        Encode queries for ColBERT retrieval
        
        Args:
            queries: List of query strings
            batch_size: Batch size for processing (None for single batch)
            to_cpu: Whether to move results to CPU
            
        Returns:
            Query representations tensor
        """
        if self.tokenizer is None:
            raise RuntimeError("Model not loaded for inference. Use ColBERT.load_for_inference()")
        
        print(f"Encoding {len(queries)} queries...")
        
        # Tokenize with query prefix
        enc = self.tokenizer(queries, add_special_tokens=True, truncation=False)
        id_lists = [[self.Q_PID] + ids for ids in enc["input_ids"]]
        
        # Apply dynamic augmentation with length cap
        cap = self.max_query_len or (self.tokenizer.model_max_length - 1)
        id_lists = [_dynamic_augment(ids, self.tokenizer.mask_token_id, cap) for ids in id_lists]
        
        # Pad sequences
        padded = self.tokenizer.pad({"input_ids": id_lists}, padding=True, return_tensors="pt")
        ids, mask = padded["input_ids"], padded["attention_mask"]
        
        # Process in batches if specified
        if batch_size:
            reps = []
            for i, a in tqdm(_split_into_batches(ids, mask, batch_size), desc="Encoding query batches"):
                reps.append(self._encode_batch(i, a, to_cpu))
            return torch.cat(reps)
        
        return self._encode_batch(ids, mask, to_cpu)
    
    def encode_documents(self, documents: List[str], batch_size: Optional[int] = None, 
                        keep_dims: bool = True, to_cpu: bool = False):
        """
        Encode documents for ColBERT retrieval with post-tokenization punctuation masking
        
        Args:
            documents: List of document strings
            batch_size: Batch size for processing (None for single batch)
            keep_dims: Whether to keep tensor dimensions (True) or return list of variable-length tensors
            to_cpu: Whether to move results to CPU
            
        Returns:
            Document representations tensor or list
        """
        if self.tokenizer is None:
            raise RuntimeError("Model not loaded for inference. Use ColBERT.load_for_inference()")
        
        print(f"Encoding {len(documents)} documents...")
        
        # Tokenize documents WITHOUT removing punctuation (post-tokenization masking)
        enc = self.tokenizer(documents, add_special_tokens=True, 
                           truncation=True, max_length=self.max_doc_len - 1)
        id_lists = [[self.D_PID] + ids for ids in enc["input_ids"]]
        
        # Pad sequences
        padded = self.tokenizer.pad({"input_ids": id_lists}, padding=True, return_tensors="pt")
        ids, mask = padded["input_ids"], padded["attention_mask"]
        
        # Apply post-tokenization punctuation masking
        mask[torch.isin(ids, torch.tensor(list(self.skip_ids), device=ids.device))] = 0
        
        # Process in batches if specified
        if batch_size:
            ids_s, mask_s, rev = _sort_by_length(ids, mask, batch_size)
            reps = []
            
            for i, a in tqdm(_split_into_batches(ids_s, mask_s, batch_size), desc="Encoding document batches"):
                rep = self._encode_batch(i, a, to_cpu)
                if not keep_dims:
                    # Convert to list of variable-length tensors
                    m = a.cpu().bool() if to_cpu else a.bool()
                    rep = [r[m[idx]] for idx, r in enumerate(rep)]
                reps.append(rep)
            
            if keep_dims:
                return _stack_3D_tensors(reps)[rev]
            else:
                # Flatten and reorder
                flat = [d for g in reps for d in g]
                return [flat[i] for i in rev.tolist()]
        
        # Single batch processing
        rep = self._encode_batch(ids, mask, to_cpu)
        if not keep_dims:
            m = mask.cpu().bool() if to_cpu else mask.bool()
            rep = [r[m[idx]] for idx, r in enumerate(rep)]
        
        return rep
    
    def compute_similarity(q_reps: torch.Tensor, p_reps: torch.Tensor):
        """
        Compute ColBERT-style max similarity between queries and passages
        
        Args:
            q_reps: Query representations [num_queries, max_q_len, dim]
            p_reps: Passage representations [num_passages, max_p_len, dim]
            
        Returns:
            Similarity scores [num_queries, num_passages]
        """
        token_scores = torch.einsum("qin,pjn->qipj", q_reps, p_reps)
        scores, _ = token_scores.max(-1)
        scores = scores.sum(1)
        return scores
    
    def search(self, queries: List[str], documents: List[str], 
               batch_size: Optional[int] = None, return_scores: bool = True):
        """
        End-to-end search: encode queries and documents, compute similarities
        
        Args:
            queries: List of query strings
            documents: List of document strings
            batch_size: Batch size for encoding
            return_scores: Whether to return similarity scores
            
        Returns:
            If return_scores=True: (scores, query_reps, doc_reps)
            If return_scores=False: (query_reps, doc_reps)
        """
        # Encode queries and documents
        q_reps = self.encode_queries(queries, batch_size=batch_size, to_cpu=True)
        p_reps = self.encode_documents(documents, batch_size=batch_size, to_cpu=True)
        
        if return_scores:
            # Compute similarities
            print("Computing similarities...")
            scores = self.compute_similarity(q_reps, p_reps)
            return scores, q_reps, p_reps
        
        return q_reps, p_reps
    
    def rank_documents(self, query: str, documents: List[str], top_k: int = 10):
        """
        Rank documents for a single query
        
        Args:
            query: Query string
            documents: List of document strings
            top_k: Number of top results to return
            
        Returns:
            List of (document_index, score, document_text) tuples
        """
        scores, _, _ = self.search([query], documents, return_scores=True)
        scores = scores.squeeze(0)  # Remove query dimension
        
        # Get top-k results
        top_indices = torch.topk(scores, min(top_k, len(documents))).indices
        
        results = []
        for idx in top_indices:
            results.append((idx.item(), scores[idx].item(), documents[idx.item()]))
        
        return results



# ---------------------------------------------------------------------------
# Helper Functions
# ---------------------------------------------------------------------------

def _split_into_batches(ids: torch.Tensor, mask: torch.Tensor, bsize: int):
    return [(ids[i:i + bsize], mask[i:i + bsize])
            for i in range(0, ids.size(0), bsize)]

def _sort_by_length(ids: torch.Tensor, mask: torch.Tensor, bsize: int):
    if ids.size(0) <= bsize:
        return ids, mask, torch.arange(ids.size(0))
    
    lengths = mask.sum(-1)
    order = lengths.sort().indices
    reverse = order.sort().indices
    return ids[order], mask[order], reverse

def _dynamic_augment(ids: List[int], mask_id: int, max_cap: int = None) -> List[int]:
    if max_cap is not None and len(ids) > max_cap:
        return ids[:max_cap]
    
    q_len = len(ids)
    target = max(32, ((q_len + 31) // 32) * 32)
    if target - q_len < 8:
        target = q_len + 8
    if max_cap is not None:
        target = min(target, max_cap)
    return ids + [mask_id] * (target - q_len)

def _stack_3D_tensors(groups):
    bsize = sum(x.size(0) for x in groups)
    maxlen = max(x.size(1) for x in groups)
    hdim = groups[0].size(2)
    out = torch.zeros(bsize, maxlen, hdim, device=groups[0].device, dtype=groups[0].dtype)
    ptr = 0
    for g in groups:
        out[ptr:ptr + g.size(0), :g.size(1)] = g
        ptr += g.size(0)
    return out

```
</details>


<details>
<summary><b>Click here for inference code using ONNX</b></summary>

> [!TIP]
> Copy paste the next snippet before running the below snippet.


```python
model_path = "prithivida/modern_colbert_base_en_v1"
onnx_model_path = "prithivida/modern_colbert_base_en_v1/onnx/model.onnx" 

# Load ONNX model for inference using the standalone tokenizer path
onnx_colbert = ONNXColBERT(onnx_model_path, model_path , max_query_len=32, max_doc_len=300) # Pass model_path as tokenizer_path

# Test inference
queries = [
        "How does deep learning work?",
        "What is machine learning?",
        "What are neural networks?"
    ]

documents = [
    "Machine learning is the idea of approximating a real world phenomenon using data, the approximation can be mathmetical or otherwise.",
    "Deep learning uses neural networks with multiple layers to process data.",
    "Neural networks are computing systems inspired by biological neural networks.",
    "Artificial intelligence encompasses machine learning and deep learning.",
]

# Encode and find similarity
print("\n=== ONNX Encode and Compute similarity ===")
q_reps = onnx_colbert.encode_queries(queries, batch_size=4, to_cpu=True)
p_reps = onnx_colbert.encode_documents(documents, batch_size=4, to_cpu=True)
scores = onnx_colbert.compute_similarity(q_reps, p_reps)


# or Test single query ranking
print("\n=== ONNX Standalone Single Query Ranking ===")
query = "How does deep learning work?"
results = onnx_colbert.rank_documents(query, documents, top_k=3)

print(f"Query: {query}")
for i, (doc_idx, score, doc_text) in enumerate(results):
    print(f"  {i+1}. Score: {score:.4f} | Doc: {doc_text}")

```


```python

import numpy as np
import onnxruntime as ort
from tokenizers import AddedToken, Tokenizer
import json
import string
from pathlib import Path
from typing import List, Optional, Tuple, Union
from tqdm import tqdm


# ---------------------------------------------------------------------------
# ONNX ColBERT Class
# ---------------------------------------------------------------------------

class ONNXColBERT:
    def __init__(self, onnx_model_path: str, tokenizer_path: str,
                 max_query_len: int = 256, max_doc_len: int = 300,
                 providers: Optional[List[str]] = None):
        """
        ONNX ColBERT - identical to PyTorch ColBERT.load_for_inference()
        
        Args:
            onnx_model_path: Path to the ONNX model file
            tokenizer_path: Path to the tokenizer directory
            max_query_len: Maximum query length
            max_doc_len: Maximum document length
            providers: ONNX Runtime providers
        """
        # Load standalone tokenizer
        self.model_dir = Path(tokenizer_path)
        self.tokenizer = self._get_tokenizer(max_length=512)
        self.max_query_len = max_query_len
        self.max_doc_len = max_doc_len
        
        # Setup inference configuration
        self.Q_PID = self.tokenizer.token_to_id("[unused0]")
        self.D_PID = self.tokenizer.token_to_id("[unused1]")
        self.mask_token_id = self.tokenizer.token_to_id("[MASK]")
        
        if None in [self.Q_PID, self.D_PID, self.mask_token_id]:
            raise ValueError("Could not find required special tokens in tokenizer")
        
        # Setup post-tokenization punctuation masking
        self.skip_ids = set()
        for c in string.punctuation:
            encoded = self.tokenizer.encode(c, add_special_tokens=False)
            if len(encoded.ids) > 0:
                self.skip_ids.add(encoded.ids[0])
        
        print(f"Identified {len(self.skip_ids)} punctuation token IDs to skip")
        
        # Initialize ONNX Runtime session
        if providers is None:
            providers = ['CUDAExecutionProvider', 'CPUExecutionProvider']
        
        self.session = ort.InferenceSession(onnx_model_path, providers=providers)
        print(f"✅ ONNX ColBERT loaded with providers: {self.session.get_providers()}")
        print(f"Query max length: {max_query_len}, Document max length: {max_doc_len}")

    def _get_tokenizer(self, max_length: int = 512) -> Tokenizer:
        """Initialize tokenizer"""
        with open(str(self.model_dir / "config.json")) as config_file:
            config = json.load(config_file)
        with open(str(self.model_dir / "tokenizer_config.json")) as tokenizer_config_file:
            tokenizer_config = json.load(tokenizer_config_file)
        with open(str(self.model_dir / "special_tokens_map.json")) as tokens_map_file:
            tokens_map = json.load(tokens_map_file)
        
        tokenizer = Tokenizer.from_file(str(self.model_dir / "tokenizer.json"))
        tokenizer.enable_truncation(max_length=min(tokenizer_config["model_max_length"], max_length))
        tokenizer.enable_padding(pad_id=config["pad_token_id"], pad_token=tokenizer_config["pad_token"])
        
        for token in tokens_map.values():
            if isinstance(token, str):
                tokenizer.add_special_tokens([token])
            elif isinstance(token, dict):
                tokenizer.add_special_tokens([AddedToken(**token)])
        
        return tokenizer

    def _encode_batch(self, ids: np.ndarray, mask: np.ndarray, to_cpu: bool = False) -> np.ndarray:
        """Internal encoding function"""
        # Create position IDs
        pos = np.arange(ids.shape[1])[None, :].repeat(ids.shape[0], axis=0)
        
        # ONNX inference
        inputs = {
            "input_ids": ids.astype(np.int64),
            "attention_mask": mask.astype(np.int64),
            "position_ids": pos.astype(np.int64)
        }
        
        outputs = self.session.run(["last_hidden_state"], inputs)
        return outputs[0]

    def encode_queries(self, queries: List[str], batch_size: Optional[int] = None, 
                      to_cpu: bool = False) -> np.ndarray:
        """Encode queries - IDENTICAL to PyTorch ColBERT.encode_queries()"""
        print(f"Encoding {len(queries)} queries...")
        
        # Tokenize with query prefix
        encoded_queries = self.tokenizer.encode_batch(queries, add_special_tokens=True)
        id_lists = [[self.Q_PID] + encoded.ids for encoded in encoded_queries]
        
        # Apply dynamic augmentation with length cap
        cap = self.max_query_len or 511
        id_lists = [_dynamic_augment(ids, self.mask_token_id, cap) for ids in id_lists]
        
        # Manual padding
        max_len = max(len(ids) for ids in id_lists)
        batch_size_actual = len(id_lists)
        
        ids = np.zeros((batch_size_actual, max_len), dtype=np.int64)
        mask = np.zeros((batch_size_actual, max_len), dtype=np.int64)
        
        for i, id_list in enumerate(id_lists):
            ids[i, :len(id_list)] = id_list
            mask[i, :len(id_list)] = 1
        
        # Process in batches if specified
        if batch_size:
            reps = []
            for i, a in tqdm(_split_into_batches(ids, mask, batch_size), desc="Encoding query batches"):
                reps.append(self._encode_batch(i, a, to_cpu))
            return np.concatenate(reps, axis=0)
        
        return self._encode_batch(ids, mask, to_cpu)

    def encode_documents(self, documents: List[str], batch_size: Optional[int] = None,
                        keep_dims: bool = True, to_cpu: bool = False) -> Union[np.ndarray, List[np.ndarray]]:
        """Encode documents - IDENTICAL to PyTorch ColBERT.encode_documents()"""
        print(f"Encoding {len(documents)} documents...")
        
        # Encode documents individually to preserve natural lengths
        encoded_docs = []
        for doc in documents:
            encoded = self.tokenizer.encode(doc, add_special_tokens=True)
            encoded_docs.append(encoded)
        
        id_lists = []
        for encoded in encoded_docs:
            ids = encoded.ids
            # Truncate to max_doc_len - 1
            if len(ids) > self.max_doc_len - 1:
                ids = ids[:self.max_doc_len - 1]
            # Add D_PID prefix
            ids = [self.D_PID] + ids
            id_lists.append(ids)
        
        # Manual padding
        max_len = max(len(ids) for ids in id_lists)
        batch_size_actual = len(id_lists)
        
        ids = np.zeros((batch_size_actual, max_len), dtype=np.int64)
        mask = np.zeros((batch_size_actual, max_len), dtype=np.int64)
        
        for i, id_list in enumerate(id_lists):
            ids[i, :len(id_list)] = id_list
            mask[i, :len(id_list)] = 1
        
        # Apply post-tokenization punctuation masking
        for skip_id in self.skip_ids:
            mask[ids == skip_id] = 0
        
        # Process in batches if specified
        if batch_size:
            ids_s, mask_s, rev = _sort_by_length(ids, mask, batch_size)
            reps = []
            
            for i, a in tqdm(_split_into_batches(ids_s, mask_s, batch_size), desc="Encoding document batches"):
                rep = self._encode_batch(i, a, to_cpu)
                if not keep_dims:
                    m = a.astype(bool)
                    rep = [r[m[idx]] for idx, r in enumerate(rep)]
                reps.append(rep)
            
            if keep_dims:
                return _stack_3D_arrays(reps)[rev]
            else:
                flat = [d for g in reps for d in g]
                return [flat[i] for i in rev.tolist()]
        
        # Single batch processing
        rep = self._encode_batch(ids, mask, to_cpu)
        if not keep_dims:
            m = mask.astype(bool)
            rep = [r[m[idx]] for idx, r in enumerate(rep)]
        
        return rep

    def compute_similarity(q_reps: np.ndarray, p_reps: np.ndarray) -> np.ndarray:
        """Compute ColBERT similarity - IDENTICAL to PyTorch version"""
        # Identical to PyTorch: torch.einsum("qin,pjn->qipj", q_reps, p_reps)
        token_scores = np.einsum("qin,pjn->qipj", q_reps, p_reps)
        
        # Identical to PyTorch: scores, _ = token_scores.max(-1)
        scores = np.max(token_scores, axis=-1)
        
        # Identical to PyTorch: scores = scores.sum(1)
        scores = np.sum(scores, axis=1)
        
        return scores

    def search(self, queries: List[str], documents: List[str],
               batch_size: Optional[int] = None, return_scores: bool = True):
        """End-to-end search - IDENTICAL to PyTorch ColBERT.search()"""
        # Encode queries and documents
        q_reps = self.encode_queries(queries, batch_size=batch_size, to_cpu=True)
        p_reps = self.encode_documents(documents, batch_size=batch_size, to_cpu=True)
        
        if return_scores:
            # Compute similarities
            print("Computing similarities...")
            scores = self.compute_similarity(q_reps, p_reps)
            return scores, q_reps, p_reps
        
        return q_reps, p_reps

    def rank_documents(self, query: str, documents: List[str], top_k: int = 10) -> List[Tuple]:
        """Rank documents - IDENTICAL to PyTorch ColBERT.rank_documents()"""
        scores, _, _ = self.search([query], documents, return_scores=True)
        scores = scores.squeeze(0)
        
        # Get top-k results
        top_indices = np.argsort(scores)[::-1][:min(top_k, len(documents))]
        
        results = []
        for idx in top_indices:
            results.append((int(idx), float(scores[idx]), documents[idx]))
        
        return results



# ---------------------------------------------------------------------------
# Helper Functions (NumPy versions)
# ---------------------------------------------------------------------------

def _split_into_batches(ids: np.ndarray, mask: np.ndarray, bsize: int):
    return [(ids[i:i + bsize], mask[i:i + bsize])
            for i in range(0, ids.shape[0], bsize)]

def _sort_by_length(ids: np.ndarray, mask: np.ndarray, bsize: int):
    if ids.shape[0] <= bsize:
        return ids, mask, np.arange(ids.shape[0])
    
    lengths = mask.sum(-1)
    order = np.argsort(lengths)
    reverse = np.argsort(order)
    return ids[order], mask[order], reverse

def _dynamic_augment(ids: List[int], mask_id: int, max_cap: int = None) -> List[int]:
    if max_cap is not None and len(ids) > max_cap:
        return ids[:max_cap]
    
    q_len = len(ids)
    target = max(32, ((q_len + 31) // 32) * 32)
    if target - q_len < 8:
        target = q_len + 8
    if max_cap is not None:
        target = min(target, max_cap)
    return ids + [mask_id] * (target - q_len)

def _stack_3D_arrays(groups):
    bsize = sum(x.shape[0] for x in groups)
    maxlen = max(x.shape[1] for x in groups)
    hdim = groups[0].shape[2]
    out = np.zeros((bsize, maxlen, hdim), dtype=groups[0].dtype)
    ptr = 0
    for g in groups:
        out[ptr:ptr + g.shape[0], :g.shape[1]] = g
        ptr += g.shape[0]
    return out



```

</details>


<br/>

_____


# Notes on reproducing

We welcome anyone to reproduce our results. Here are some tips and observations:

- Please pay attention to the query length. We tried our best to look at what the original ColBERTv2.0 used, what LightOn AI used and also spoke to Nils Reimers on taking liberty in the choice of query lengths.
- Note on query length from ColBERTv2.0 paper:
> Unless otherwise stated, we keep the default query maximum sequence length for ColBERTv2 and RocketQAv2, which is 32 tokens. For the ArguAna test in BEIR, as the queries are themselves long documents, we set the maximum query length used by ColBERTv2 and RocketQAv2 to 300. For Climate-FEVER, as the queries are relatively long sentence claims, we set the maximum query length used by ColBERTv2 to 64.
- Query lengths used by LightOn AI PyLate: (Assuming the OSS code is what they used)
  ```python
   query_len = {
        "quora": 32,
        "climate-fever": 64,
        "nq": 32,
        "msmarco": 32,
        "hotpotqa": 32,
        "nfcorpus": 32,
        "scifact": 48,
        "trec-covid": 48,
        "fiqa": 32,
        "arguana": 64,
        "scidocs": 48,
        "dbpedia-entity": 32,
        "webis-touche2020": 32,
        "fever": 32,
        "cqadupstack/android": 32,
        "cqadupstack/english": 32,
        "cqadupstack/gaming": 32,
        "cqadupstack/gis": 32,
        "cqadupstack/mathematica": 32,
        "cqadupstack/physics": 32,
        "cqadupstack/programmers": 32,
        "cqadupstack/stats": 32,
        "cqadupstack/tex": 32,
        "cqadupstack/unix": 32,
        "cqadupstack/webmasters": 32,
        "cqadupstack/wordpress": 32,
    }
  ```
- This is what OG Nils had to say when I asked about why query has so much liberty:
> Comparison is always hard...I think query length doesn't skew too much. Retrieval compute scales linear with the number of query tokens. So if people are comfortable to compare models with largely different parameters, comparing different query token lengths would be fine as well
- We took a balanced view of both choices and borrowed the query length defaults used by LightOn with only exception of arguana. Instead of original's Colbert's 300 or LightOn's 64 we used 256.
- Nota bene: There *may be* minor differences in the numbers when reproducing, for instance BGE-M3 reports a nDCG@10 of 59.3 for MIRACL hindi and we Observed only 58.9. But not massive differences like in the case of reported and reproduced Colbert-small in some datasets.

Here are our numbers for the full hindi run on BGE-M3

```python
{'NDCG@1': 0.49714, 'NDCG@3': 0.5115, 'NDCG@5': 0.53908, 'NDCG@10': 0.58936, 'NDCG@100': 0.6457, 'NDCG@1000': 0.65336}
{'MAP@1': 0.28845, 'MAP@3': 0.42424, 'MAP@5': 0.46455, 'MAP@10': 0.49955, 'MAP@100': 0.51886, 'MAP@1000': 0.51933}
{'Recall@10': 0.73032, 'Recall@50': 0.8987, 'Recall@100': 0.93974, 'Recall@200': 0.95763, 'Recall@500': 0.97813, 'Recall@1000': 0.9902}
{'P@1': 0.49714, 'P@3': 0.33048, 'P@5': 0.24629, 'P@10': 0.15543, 'P@100': 0.0202, 'P@1000': 0.00212}
{'MRR@10': 0.60893, 'MRR@100': 0.615, 'MRR@1000': 0.6151}
```

- We made sure all quirks and known BEIR ColBERT issues are taken care off:
  - [Arguana and Quora (?) self match issues](https://github.com/beir-cellar/beir/issues/67)
  - Will add more - TBA

# Acknowledgements

- Thanks to Alibaba-NLP for Alibaba-NLP/gte-modernbert-base, which is our base model (as used by LightOn AI)
- Thanks to Nils Reimers for the tips and inputs.
- Thanks to Nandan Thakur for answering questions.
- Thanks to Antoine Chaffin and the entire LightOn team for PyLate.
- Thanks to NanoBEIR authors, its a blessing.
- Thanks to Prithivi Da for his generous funding for this work :-)


# Open Questions (still have on ColBERT) / thoughts:
- People worked on ColBERT would agree marginmse loss sucks and KLDiv works great for ColBERT in practice, is there a formal / mathematical study on why marginmse sucks so bad ? (JaColBERT has done some ablations but would love to read why)
- What BERT as an encoder architecture brings to be the best choice for ColBERT compared to other encoder architectures ?
- What were the temperature choices for ColBERT for query, doc scores ?
- Alibaba-NLP/gte-modernbert-base's BEIR avg is 55.33 and beats best ColBERTs in the world (as of 2nd July 2025), so calling single-vec models naive is naive..


# Wishlist
- When I can expend more GPU
  - would love to try and reproduce Ligton AI's GTE-ModernColBERT BEIR eval numbers.
  - would run eval for prithivida/modern_colbert_base_en_v1 on long docs benchmark.