import torch import torch.nn as nn import math from transformers import PreTrainedModel, PreTrainedConfig from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions class NanoGPTCompressedConfig(PreTrainedConfig): model_type = "nanogpt_compressed" def __init__( self, vocab_size=6060, block_size=1024, n_layer=8, n_head=8, n_embd=512, dropout=0.0, bias=True, compression_method="fixed_low_rank_mlp", compression_rank=128, compressed_layers=[1], **kwargs ): self.vocab_size = vocab_size self.block_size = block_size self.n_layer = n_layer self.n_head = n_head self.n_embd = n_embd self.dropout = dropout self.bias = bias self.compression_method = compression_method self.compression_rank = compression_rank self.compressed_layers = compressed_layers super().__init__(**kwargs) class LowRankLinear(nn.Module): def __init__(self, input_dim, output_dim, rank=16, bias=True): super().__init__() self.rank = rank self.input_dim = input_dim self.output_dim = output_dim self.U = nn.Parameter(torch.randn(input_dim, rank) * 0.02) self.V = nn.Parameter(torch.randn(rank, output_dim) * 0.02) if bias: self.bias = nn.Parameter(torch.zeros(output_dim)) else: self.register_parameter('bias', None) def forward(self, x): result = (x @ self.U) @ self.V if self.bias is not None: result = result + self.bias return result class LayerNorm(nn.Module): def __init__(self, ndim, bias): super().__init__() self.weight = nn.Parameter(torch.ones(ndim)) self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None def forward(self, input): return F.layer_norm(input, self.weight.shape, self.weight, self.bias, 1e-5) class CausalSelfAttention(nn.Module): def __init__(self, config): super().__init__() assert config.n_embd % config.n_head == 0 self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias) self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias) self.attn_dropout = nn.Dropout(config.dropout) self.resid_dropout = nn.Dropout(config.dropout) self.n_head = config.n_head self.n_embd = config.n_embd self.dropout = config.dropout self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)) .view(1, 1, config.block_size, config.block_size)) def forward(self, x): B, T, C = x.size() q, k, v = self.c_attn(x).split(self.n_embd, dim=2) k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf')) att = F.softmax(att, dim=-1) att = self.attn_dropout(att) y = att @ v y = y.transpose(1, 2).contiguous().view(B, T, C) y = self.resid_dropout(self.c_proj(y)) return y class MLP(nn.Module): def __init__(self, config, layer_idx=None): super().__init__() self.layer_idx = layer_idx # Check if this layer should be compressed if (hasattr(config, 'compressed_layers') and layer_idx is not None and layer_idx in config.compressed_layers): print(f"Creating compressed MLP for layer {layer_idx}") rank = getattr(config, 'compression_rank', 128) self.c_fc = LowRankLinear(config.n_embd, 4 * config.n_embd, rank, bias=config.bias) self.c_proj = LowRankLinear(4 * config.n_embd, config.n_embd, rank, bias=config.bias) else: self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias) self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias) self.dropout = nn.Dropout(config.dropout) def forward(self, x): x = self.c_fc(x) x = F.gelu(x) x = self.c_proj(x) x = self.dropout(x) return x class Block(nn.Module): def __init__(self, config, layer_idx=None): super().__init__() self.ln_1 = LayerNorm(config.n_embd, bias=config.bias) self.attn = CausalSelfAttention(config) self.ln_2 = LayerNorm(config.n_embd, bias=config.bias) self.mlp = MLP(config, layer_idx=layer_idx) def forward(self, x): x = x + self.attn(self.ln_1(x)) x = x + self.mlp(self.ln_2(x)) return x class NanoGPTCompressedModel(PreTrainedModel): config_class = NanoGPTCompressedConfig def __init__(self, config): super().__init__(config) self.config = config self.transformer = nn.ModuleDict(dict( wte = nn.Embedding(config.vocab_size, config.n_embd), wpe = nn.Embedding(config.block_size, config.n_embd), drop = nn.Dropout(config.dropout), h = nn.ModuleList([Block(config, layer_idx=i) for i in range(config.n_layer)]), ln_f = LayerNorm(config.n_embd, bias=config.bias), )) self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) # Share weights self.transformer.wte.weight = self.lm_head.weight # Initialize weights self.apply(self._init_weights) for pn, p in self.named_parameters(): if pn.endswith('c_proj.weight') or pn.endswith('c_proj.V'): torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * config.n_layer)) def _init_weights(self, module): if isinstance(module, nn.Linear): torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) if module.bias is not None: torch.nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) def forward(self, idx, targets=None): device = idx.device b, t = idx.size() assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}" pos = torch.arange(0, t, dtype=torch.long, device=device) tok_emb = self.transformer.wte(idx) pos_emb = self.transformer.wpe(pos) x = self.transformer.drop(tok_emb + pos_emb) for block in self.transformer.h: x = block(x) x = self.transformer.ln_f(x) if targets is not None: logits = self.lm_head(x) loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1) else: logits = self.lm_head(x[:, [-1], :]) loss = None return CausalLMOutputWithCrossAttentions( loss=loss, logits=logits, past_key_values=None, hidden_states=None, attentions=None, cross_attentions=None, ) @torch.no_grad() def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None): for _ in range(max_new_tokens): idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:] logits = self(idx_cond).logits logits = logits[:, -1, :] / temperature if top_k is not None: v, _ = torch.topk(logits, min(top_k, logits.size(-1))) logits[logits < v[:, [-1]]] = -float('Inf') probs = F.softmax(logits, dim=-1) idx_next = torch.multinomial(probs, num_samples=1) idx = torch.cat((idx, idx_next), dim=1) return idx