File size: 5,539 Bytes
072bce9 9571e71 bc476e7 072bce9 bc476e7 072bce9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
language:
- en
license: openrail++
pipeline_tag: depth-estimation
library_name: diffusers
tags:
- depth estimation
- image analysis
- computer vision
- in-the-wild
- zero-shot
pinned: true
---
<h1 align="center">Marigold Depth v1-1 Model Card</h1>
<p align="center">
<a title="Image Depth" href="https://huggingface.co/spaces/prs-eth/marigold" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://img.shields.io/badge/%F0%9F%A4%97%20Image%20Depth%20-Demo-yellow" alt="Image Depth">
</a>
<a title="diffusers" href="https://huggingface.co/docs/diffusers/using-diffusers/marigold_usage" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://img.shields.io/badge/%F0%9F%A4%97%20diffusers%20-Integration%20🧨-yellow" alt="diffusers">
</a>
<a title="Github" href="https://github.com/prs-eth/marigold" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://img.shields.io/github/stars/prs-eth/marigold?label=GitHub%20%E2%98%85&logo=github&color=C8C" alt="Github">
</a>
<a title="Website" href="https://marigoldcomputervision.github.io/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://img.shields.io/badge/%E2%99%A5%20Project%20-Website-blue" alt="Website">
</a>
<a title="arXiv" href="https://arxiv.org/abs/2505.09358" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://img.shields.io/badge/%F0%9F%93%84%20Read%20-Paper-AF3436" alt="arXiv">
</a>
<a title="Social" href="https://twitter.com/antonobukhov1" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://img.shields.io/twitter/follow/:?label=Subscribe%20for%20updates!" alt="Social">
</a>
<a title="License" href="https://huggingface.co/stabilityai/stable-diffusion-2/blob/main/LICENSE-MODEL" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://img.shields.io/badge/License-OpenRAIL++-929292" alt="License">
</a>
</p>
This is a model card for the `marigold-depth-v1-1` model for monocular depth estimation from a single image.
The model is fine-tuned from the `stable-diffusion-2` [model](https://huggingface.co/stabilityai/stable-diffusion-2) as
described in our papers:
- [CVPR'2024 paper](https://hf.co/papers/2312.02145) titled "Repurposing Diffusion-Based Image Generators for Monocular Depth Estimation"
- [Journal extension](https://hf.co/papers/2505.09358) titled "Marigold: Affordable Adaptation of Diffusion-Based Image Generators for Image Analysis"
### Using the model
- Play with the interactive [Hugging Face Spaces demo](https://huggingface.co/spaces/prs-eth/marigold): check out how the model works with example images or upload your own.
- Use it with [diffusers](https://huggingface.co/docs/diffusers/using-diffusers/marigold_usage) to compute the results with a few lines of code.
- Get to the bottom of things with our [official codebase](https://github.com/prs-eth/marigold).
## Model Details
- **Developed by:** [Bingxin Ke](http://www.kebingxin.com/), [Kevin Qu](https://ch.linkedin.com/in/kevin-qu-b3417621b), [Tianfu Wang](https://tianfwang.github.io/), [Nando Metzger](https://nandometzger.github.io/), [Shengyu Huang](https://shengyuh.github.io/), [Bo Li](https://www.linkedin.com/in/bobboli0202), [Anton Obukhov](https://www.obukhov.ai/), [Konrad Schindler](https://scholar.google.com/citations?user=FZuNgqIAAAAJ).
- **Model type:** Generative latent diffusion-based affine-invariant monocular depth estimation from a single image.
- **Language:** English.
- **License:** [CreativeML Open RAIL++-M License](https://huggingface.co/stabilityai/stable-diffusion-2/blob/main/LICENSE-MODEL).
- **Model Description:** This model can be used to generate an estimated depth map of an input image.
- **Resolution**: Even though any resolution can be processed, the model inherits the base diffusion model's effective resolution of roughly **768** pixels.
This means that for optimal predictions, any larger input image should be resized to make the longer side 768 pixels before feeding it into the model.
- **Steps and scheduler**: This model was designed for usage with the **DDIM** scheduler and between **1 and 50** denoising steps.
- **Outputs**:
- **Affine-invariant depth map**: The predicted values are between 0 and 1, interpolating between the near and far planes of the model's choice.
- **Uncertainty map**: Produced only when multiple predictions are ensembled with ensemble size larger than 2.
- **Resources for more information:** [Project Website](https://marigoldcomputervision.github.io/), [Paper](https://arxiv.org/abs/2505.09358), [Code](https://github.com/prs-eth/marigold).
- **Cite as:**
```bibtex
@misc{ke2025marigold,
title={Marigold: Affordable Adaptation of Diffusion-Based Image Generators for Image Analysis},
author={Bingxin Ke and Kevin Qu and Tianfu Wang and Nando Metzger and Shengyu Huang and Bo Li and Anton Obukhov and Konrad Schindler},
year={2025},
eprint={2505.09358},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
@InProceedings{ke2023repurposing,
title={Repurposing Diffusion-Based Image Generators for Monocular Depth Estimation},
author={Bingxin Ke and Anton Obukhov and Shengyu Huang and Nando Metzger and Rodrigo Caye Daudt and Konrad Schindler},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2024}
}
``` |