--- license: apache-2.0 --- # gibberish_detector_onnx: quantized avx2 ```py # pip install 'optimum[onnxruntime,exporters]' from optimum.pipelines import pipeline classifier = pipeline( "text-classification", model="pszemraj/gibberish_detector_onnx-quant-avx2", accelerator="ort", ) classifier("ayy waddup") # [{'label': 'noise', 'score': 0.38642483949661255}] ``` ## differences between quant params the one with `-pc` suffix means `per_channel=True` ```py >>> src = 'quant_onnx_gibberish_detector' # avx2 >>> classifier = pipeline('text-classification', model=src, accelerator='ort') >>> classifier('ayy waddup') [{'label': 'noise', 'score': 0.34829846024513245}] >>> src = 'quant_onnx_gibberish_detector-pc' # avx2 per channel (this model) >>> classifier = pipeline('text-classification', model=src, accelerator='ort') >>> classifier('ayy waddup') [{'label': 'noise', 'score': 0.38642483949661255}] >>> src = 'onnx_gibberish_detector' # unquantized onnx >>> classifier = pipeline('text-classification', model=src, accelerator='ort') >>> classifier('ayy waddup') [{'label': 'noise', 'score': 0.6847617626190186}] ```