--- tags: - gpt-neo - gpt-peter - chatbot inference: false base_model: EleutherAI/gpt-neo-2.7B --- # pszemraj/gpt-peter-2.7B - This model is a fine-tuned version of [EleutherAI/gpt-neo-2.7B](https://huggingface.co/EleutherAI/gpt-neo-2.7B) on about 80k WhatsApp and iMessage texts. - The model is too large to use the inference API. linked [here](https://colab.research.google.com/gist/pszemraj/a59b43813437b43973c8f8f9a3944565/testing-pszemraj-gpt-peter-2-7b.ipynb) is a notebook for testing in Colab. - alternatively, you can message [a bot on telegram](http://t.me/GPTPeter_bot) where I test LLMs for dialogue generation - the telegram bot code and the model training code can be found [in this repository](https://github.com/pszemraj/ai-msgbot) ## Usage in python Install the transformers library if you don't have it: ``` pip install -U transformers ``` load the model into a `pipeline` object: ``` from transformers import pipeline import torch my_chatbot = pipeline('text-generation', 'pszemraj/gpt-peter-2.7B', device=0 if torch.cuda.is_available() else -1, ) ``` generate text! ``` my_chatbot('Did you ever hear the tragedy of Darth Plagueis The Wise?') ``` _(example above for simplicity, but adding generation parameters such as `no_repeat_ngram_size` are recommended to get better generations)_ ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 32 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 1 ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6