punit16 commited on
Commit
9341c01
ยท
verified ยท
1 Parent(s): ddc1273

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +46 -3
README.md CHANGED
@@ -1,3 +1,46 @@
1
- ---
2
- license: llama3.2
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: llama3.2
3
+ base_model: meta-llama/Meta-Llama-3-3B
4
+ tags:
5
+ - summarization
6
+ - news
7
+ - llama3
8
+ - fine-tuned
9
+ - llama3.2
10
+ ---
11
+
12
+ # ๐Ÿ“ฐ Automatic News Summarizer (Fine-tuned on LLaMA 3.2 3B)
13
+
14
+ This model is a fine-tuned version of **Meta-LLaMA-3-3B**, optimized for **automatic news summarization** tasks. It is designed to generate concise and coherent summaries of news articles using state-of-the-art language modeling techniques.
15
+
16
+ ## ๐Ÿ“Œ Model Details
17
+
18
+ - **Base model**: [Meta-LLaMA-3-3B](https://huggingface.co/meta-llama/Meta-Llama-3-3B)
19
+ - **Fine-tuned for**: Summarization
20
+ - **Architecture**: Decoder-only Transformer (LLaMA 3.2 3B)
21
+ - **License**: [Meta LLaMA 3 Community License](https://ai.meta.com/resources/models-and-libraries/llama-downloads/)
22
+
23
+ ## ๐Ÿ“š Training
24
+
25
+ - Fine-tuned on a dataset of curated news articles and summaries
26
+ - Optimized for relevance, coherence, and brevity
27
+ - Training framework: Hugging Face Transformers
28
+ - Fine-tuning platform: Google Colab
29
+
30
+ ## ๐Ÿš€ Usage Example
31
+
32
+ ```python
33
+ from transformers import AutoTokenizer, AutoModelForCausalLM
34
+
35
+ model_name = "punit16/automatic_news_summarizer"
36
+
37
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
38
+ model = AutoModelForCausalLM.from_pretrained(model_name)
39
+
40
+ input_text = "The government has announced a new policy today aimed at reducing air pollution in major cities..."
41
+
42
+ inputs = tokenizer(input_text, return_tensors="pt")
43
+ summary_ids = model.generate(**inputs, max_new_tokens=512)
44
+ summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
45
+
46
+ print("Summary:", summary)