--- license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-herbify results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 1.0 --- # swin-tiny-patch4-window7-224-finetuned-herbify This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0378 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 35 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.94 | 4 | 1.8723 | 0.2787 | | No log | 1.88 | 8 | 1.5899 | 0.6885 | | 1.8465 | 2.82 | 12 | 1.1661 | 0.8197 | | 1.8465 | 4.0 | 17 | 0.5156 | 0.9508 | | 0.9675 | 4.94 | 21 | 0.2177 | 0.9836 | | 0.9675 | 5.88 | 25 | 0.0929 | 0.9836 | | 0.9675 | 6.82 | 29 | 0.0378 | 1.0 | | 0.2342 | 8.0 | 34 | 0.0128 | 1.0 | | 0.2342 | 8.94 | 38 | 0.0075 | 1.0 | | 0.1022 | 9.88 | 42 | 0.0053 | 1.0 | | 0.1022 | 10.82 | 46 | 0.0049 | 1.0 | | 0.0553 | 12.0 | 51 | 0.0032 | 1.0 | | 0.0553 | 12.94 | 55 | 0.0022 | 1.0 | | 0.0553 | 13.88 | 59 | 0.0017 | 1.0 | | 0.0278 | 14.82 | 63 | 0.0018 | 1.0 | | 0.0278 | 16.0 | 68 | 0.0012 | 1.0 | | 0.0266 | 16.94 | 72 | 0.0011 | 1.0 | | 0.0266 | 17.88 | 76 | 0.0006 | 1.0 | | 0.046 | 18.82 | 80 | 0.0007 | 1.0 | | 0.046 | 20.0 | 85 | 0.0007 | 1.0 | | 0.046 | 20.94 | 89 | 0.0012 | 1.0 | | 0.0245 | 21.88 | 93 | 0.0015 | 1.0 | | 0.0245 | 22.82 | 97 | 0.0011 | 1.0 | | 0.0249 | 24.0 | 102 | 0.0007 | 1.0 | | 0.0249 | 24.94 | 106 | 0.0006 | 1.0 | | 0.0201 | 25.88 | 110 | 0.0005 | 1.0 | | 0.0201 | 26.82 | 114 | 0.0005 | 1.0 | | 0.0201 | 28.0 | 119 | 0.0004 | 1.0 | | 0.0208 | 28.94 | 123 | 0.0004 | 1.0 | | 0.0208 | 29.88 | 127 | 0.0004 | 1.0 | | 0.0122 | 30.82 | 131 | 0.0004 | 1.0 | | 0.0122 | 32.0 | 136 | 0.0004 | 1.0 | | 0.0222 | 32.94 | 140 | 0.0004 | 1.0 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cpu - Datasets 2.14.5 - Tokenizers 0.13.3