|
task: |
|
_target_: pyannote.audio.tasks.SpeakerDiarization |
|
duration: 5.0 |
|
max_speakers_per_chunk: 3 |
|
max_speakers_per_frame: 2 |
|
batch_size: 32 |
|
num_workers: 10 |
|
pin_memory: false |
|
model: |
|
_target_: pyannote.audio.models.segmentation.debug.SimpleSegmentationModel |
|
optimizer: |
|
_target_: torch.optim.Adam |
|
lr: 0.001 |
|
betas: |
|
- 0.9 |
|
- 0.999 |
|
eps: 1.0e-08 |
|
weight_decay: 0 |
|
amsgrad: false |
|
scheduler: |
|
_target_: pyannote.audio.cli.lr_schedulers.CosineAnnealingWarmRestarts |
|
min_lr: 1.0e-08 |
|
max_lr: 0.001 |
|
patience: 1 |
|
trainer: |
|
_target_: pytorch_lightning.Trainer |
|
accelerator: auto |
|
accumulate_grad_batches: 1 |
|
benchmark: null |
|
deterministic: false |
|
check_val_every_n_epoch: 1 |
|
devices: auto |
|
detect_anomaly: false |
|
enable_checkpointing: true |
|
enable_model_summary: true |
|
enable_progress_bar: true |
|
fast_dev_run: false |
|
gradient_clip_val: null |
|
gradient_clip_algorithm: norm |
|
limit_predict_batches: 1.0 |
|
limit_test_batches: 1.0 |
|
limit_train_batches: 1.0 |
|
limit_val_batches: 1.0 |
|
log_every_n_steps: 50 |
|
max_epochs: 1 |
|
max_steps: -1 |
|
max_time: null |
|
min_epochs: 1 |
|
min_steps: null |
|
num_nodes: 1 |
|
num_sanity_val_steps: 2 |
|
overfit_batches: 0.0 |
|
precision: 32 |
|
profiler: null |
|
reload_dataloaders_every_n_epochs: 0 |
|
use_distributed_sampler: true |
|
strategy: auto |
|
sync_batchnorm: false |
|
val_check_interval: 1.0 |
|
protocol: AMI.SpeakerDiarization.only_words |
|
registry: REDACTED/pyannote-audio/tutorials/AMI-diarization-setup/pyannote/database.yml |
|
|