Update README.md
Browse files
README.md
CHANGED
|
@@ -19,16 +19,15 @@ pipeline_tag: text-generation
|
|
| 19 |
|
| 20 |
[Phi4-mini](https://huggingface.co/microsoft/Phi-4-mini-instruct) model quantized with [torchao](https://huggingface.co/docs/transformers/main/en/quantization/torchao) float8 dynamic activation and float8 weight quantization (per row granularity), by PyTorch team.
|
| 21 |
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
```
|
| 24 |
pip install git+https://github.com/huggingface/transformers
|
| 25 |
pip install --pre torchao --index-url https://download.pytorch.org/whl/nightly/cu126
|
| 26 |
-
pip install vllm --pre --extra-index-url https://wheels.vllm.ai/nightly
|
| 27 |
```
|
| 28 |
-
Also need to install lm-eval from source: https://github.com/EleutherAI/lm-evaluation-harness#install
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
# Quantization Recipe
|
| 32 |
|
| 33 |
We used following code to get the quantized model:
|
| 34 |
|
|
@@ -76,28 +75,14 @@ output_text = tokenizer.batch_decode(
|
|
| 76 |
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
| 77 |
)
|
| 78 |
print("Response:", output_text[0][len(prompt):])
|
|
|
|
| 79 |
|
| 80 |
-
#
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
def benchmark_fn(f, *args, **kwargs):
|
| 86 |
-
# Manual warmup
|
| 87 |
-
for _ in range(2):
|
| 88 |
-
f(*args, **kwargs)
|
| 89 |
-
|
| 90 |
-
t0 = benchmark.Timer(
|
| 91 |
-
stmt="f(*args, **kwargs)",
|
| 92 |
-
globals={"args": args, "kwargs": kwargs, "f": f},
|
| 93 |
-
num_threads=torch.get_num_threads(),
|
| 94 |
-
)
|
| 95 |
-
return f"{(t0.blocked_autorange().mean):.3f}"
|
| 96 |
-
|
| 97 |
-
torchao.quantization.utils.recommended_inductor_config_setter()
|
| 98 |
-
quantized_model = torch.compile(quantized_model, mode="max-autotune")
|
| 99 |
-
print(f"{save_to} model:", benchmark_fn(quantized_model.generate, **inputs, max_new_tokens=128))
|
| 100 |
```
|
|
|
|
| 101 |
# Model Quality
|
| 102 |
We rely on [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) to evaluate the quality of the quantized model.
|
| 103 |
|
|
@@ -118,21 +103,20 @@ lm_eval --model hf --model_args pretrained=pytorch/Phi-4-mini-instruct-float8dq
|
|
| 118 |
| mmlu (0-shot) | | x |
|
| 119 |
| mmlu_pro (5-shot) | | x |
|
| 120 |
| **Reasoning** | | |
|
| 121 |
-
| arc_challenge (0-shot) |
|
| 122 |
-
| gpqa_main_zeroshot |
|
| 123 |
| HellaSwag | 54.57 | 54.55 |
|
| 124 |
-
| openbookqa |
|
| 125 |
-
| piqa (0-shot) |
|
| 126 |
-
| social_iqa |
|
| 127 |
-
| truthfulqa_mc2 (0-shot) |
|
| 128 |
-
| winogrande (0-shot) |
|
| 129 |
| **Multilingual** | | |
|
| 130 |
-
| mgsm_en_cot_en |
|
| 131 |
| **Math** | | |
|
| 132 |
-
| gsm8k (5-shot) |
|
| 133 |
-
| mathqa (0-shot) |
|
| 134 |
| **Overall** | **TODO** | **TODO** |
|
| 135 |
-
|
| 136 |
|
| 137 |
# Model Performance
|
| 138 |
|
|
@@ -191,10 +175,4 @@ vllm serve pytorch/Phi-4-mini-instruct-float8dq --tokenizer microsoft/Phi-4-mini
|
|
| 191 |
Client:
|
| 192 |
```
|
| 193 |
python benchmarks/benchmark_serving.py --backend vllm --dataset-name sharegpt --tokenizer microsoft/Phi-4-mini-instruct --dataset-path ./ShareGPT_V3_unfiltered_cleaned_split.json --model jerryzh168/phi4-mini-float8dq --num-prompts 1
|
| 194 |
-
```
|
| 195 |
-
|
| 196 |
-
# Serving with vllm
|
| 197 |
-
We can use the same command we used in serving benchmarks to serve the model with vllm
|
| 198 |
-
```
|
| 199 |
-
vllm serve pytorch/Phi-4-mini-instruct-float8dq --tokenizer microsoft/Phi-4-mini-instruct -O3
|
| 200 |
```
|
|
|
|
| 19 |
|
| 20 |
[Phi4-mini](https://huggingface.co/microsoft/Phi-4-mini-instruct) model quantized with [torchao](https://huggingface.co/docs/transformers/main/en/quantization/torchao) float8 dynamic activation and float8 weight quantization (per row granularity), by PyTorch team.
|
| 21 |
|
| 22 |
+
|
| 23 |
+
# Quantization Recipe
|
| 24 |
+
|
| 25 |
+
First need to install the required packages:
|
| 26 |
+
|
| 27 |
```
|
| 28 |
pip install git+https://github.com/huggingface/transformers
|
| 29 |
pip install --pre torchao --index-url https://download.pytorch.org/whl/nightly/cu126
|
|
|
|
| 30 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
We used following code to get the quantized model:
|
| 33 |
|
|
|
|
| 75 |
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
| 76 |
)
|
| 77 |
print("Response:", output_text[0][len(prompt):])
|
| 78 |
+
```
|
| 79 |
|
| 80 |
+
# Serving with vllm
|
| 81 |
+
We can use the same command we used in serving benchmarks to serve the model with vllm
|
| 82 |
+
```
|
| 83 |
+
vllm serve pytorch/Phi-4-mini-instruct-float8dq --tokenizer microsoft/Phi-4-mini-instruct -O3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
```
|
| 85 |
+
|
| 86 |
# Model Quality
|
| 87 |
We rely on [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) to evaluate the quality of the quantized model.
|
| 88 |
|
|
|
|
| 103 |
| mmlu (0-shot) | | x |
|
| 104 |
| mmlu_pro (5-shot) | | x |
|
| 105 |
| **Reasoning** | | |
|
| 106 |
+
| arc_challenge (0-shot) | 56.91 | x |
|
| 107 |
+
| gpqa_main_zeroshot | 30.13 | x |
|
| 108 |
| HellaSwag | 54.57 | 54.55 |
|
| 109 |
+
| openbookqa | 33.00 | x |
|
| 110 |
+
| piqa (0-shot) | 77.64 | x |
|
| 111 |
+
| social_iqa | 49.59 | x |
|
| 112 |
+
| truthfulqa_mc2 (0-shot) | 48.39 | x |
|
| 113 |
+
| winogrande (0-shot) | 71.11 | x |
|
| 114 |
| **Multilingual** | | |
|
| 115 |
+
| mgsm_en_cot_en | 60.8 | 60.0 |
|
| 116 |
| **Math** | | |
|
| 117 |
+
| gsm8k (5-shot) | 81.88 | 80.89 |
|
| 118 |
+
| mathqa (0-shot) | 42.31 | 42.51 |
|
| 119 |
| **Overall** | **TODO** | **TODO** |
|
|
|
|
| 120 |
|
| 121 |
# Model Performance
|
| 122 |
|
|
|
|
| 175 |
Client:
|
| 176 |
```
|
| 177 |
python benchmarks/benchmark_serving.py --backend vllm --dataset-name sharegpt --tokenizer microsoft/Phi-4-mini-instruct --dataset-path ./ShareGPT_V3_unfiltered_cleaned_split.json --model jerryzh168/phi4-mini-float8dq --num-prompts 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
```
|