Update README.md
Browse files
README.md
CHANGED
|
@@ -19,6 +19,89 @@ pipeline_tag: text-generation
|
|
| 19 |
|
| 20 |
[Phi4-mini](https://huggingface.co/microsoft/Phi-4-mini-instruct) model quantized with [torchao](https://huggingface.co/docs/transformers/main/en/quantization/torchao) float8 dynamic activation and float8 weight quantization (per row granularity), by PyTorch team. Use it directly, or serve using [vLLM](https://docs.vllm.ai/en/latest/) with 36% VRAM reduction, 15-20% speedup and little to no accuracy impact on H100.
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
# Quantization Recipe
|
| 24 |
|
|
|
|
| 19 |
|
| 20 |
[Phi4-mini](https://huggingface.co/microsoft/Phi-4-mini-instruct) model quantized with [torchao](https://huggingface.co/docs/transformers/main/en/quantization/torchao) float8 dynamic activation and float8 weight quantization (per row granularity), by PyTorch team. Use it directly, or serve using [vLLM](https://docs.vllm.ai/en/latest/) with 36% VRAM reduction, 15-20% speedup and little to no accuracy impact on H100.
|
| 21 |
|
| 22 |
+
# Inference with vLLM
|
| 23 |
+
Need to install vllm nightly to get some recent changes:
|
| 24 |
+
```
|
| 25 |
+
pip install vllm --pre --extra-index-url https://wheels.vllm.ai/nightly
|
| 26 |
+
```
|
| 27 |
+
## Command Line
|
| 28 |
+
Then we can serve with the following command:
|
| 29 |
+
```
|
| 30 |
+
vllm serve pytorch/Phi-4-mini-instruct-int4wo-hqq --tokenizer microsoft/Phi-4-mini-instruct -O3
|
| 31 |
+
```
|
| 32 |
+
|
| 33 |
+
## Code Example
|
| 34 |
+
```
|
| 35 |
+
from vllm import LLM, SamplingParams
|
| 36 |
+
|
| 37 |
+
llm = LLM(model="pytorch/Phi-4-mini-instruct-float8dq", trust_remote_code=True)
|
| 38 |
+
|
| 39 |
+
messages = [
|
| 40 |
+
{"role": "system", "content": "You are a helpful AI assistant."},
|
| 41 |
+
{"role": "user", "content": "Can you provide ways to eat combinations of bananas and dragonfruits?"},
|
| 42 |
+
{"role": "assistant", "content": "Sure! Here are some ways to eat bananas and dragonfruits together: 1. Banana and dragonfruit smoothie: Blend bananas and dragonfruits together with some milk and honey. 2. Banana and dragonfruit salad: Mix sliced bananas and dragonfruits together with some lemon juice and honey."},
|
| 43 |
+
{"role": "user", "content": "What about solving an 2x + 3 = 7 equation?"},
|
| 44 |
+
]
|
| 45 |
+
|
| 46 |
+
sampling_params = SamplingParams(
|
| 47 |
+
max_tokens=500,
|
| 48 |
+
temperature=0.0,
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
output = llm.chat(messages=messages, sampling_params=sampling_params)
|
| 52 |
+
print(output[0].outputs[0].text)
|
| 53 |
+
```
|
| 54 |
+
|
| 55 |
+
# Inference with Transformers
|
| 56 |
+
|
| 57 |
+
Install the required packages:
|
| 58 |
+
```
|
| 59 |
+
pip install git+https://github.com/huggingface/transformers@main
|
| 60 |
+
pip install --pre torchao --index-url https://download.pytorch.org/whl/nightly/cu126
|
| 61 |
+
pip install torch
|
| 62 |
+
pip install accelerate
|
| 63 |
+
```
|
| 64 |
+
|
| 65 |
+
Example:
|
| 66 |
+
```
|
| 67 |
+
import torch
|
| 68 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 69 |
+
|
| 70 |
+
torch.random.manual_seed(0)
|
| 71 |
+
|
| 72 |
+
model_path = "pytorch/Phi-4-mini-instruct-float8dq"
|
| 73 |
+
|
| 74 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 75 |
+
model_path,
|
| 76 |
+
device_map="auto",
|
| 77 |
+
torch_dtype="auto",
|
| 78 |
+
trust_remote_code=True,
|
| 79 |
+
)
|
| 80 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 81 |
+
|
| 82 |
+
messages = [
|
| 83 |
+
{"role": "system", "content": "You are a helpful AI assistant."},
|
| 84 |
+
{"role": "user", "content": "Can you provide ways to eat combinations of bananas and dragonfruits?"},
|
| 85 |
+
{"role": "assistant", "content": "Sure! Here are some ways to eat bananas and dragonfruits together: 1. Banana and dragonfruit smoothie: Blend bananas and dragonfruits together with some milk and honey. 2. Banana and dragonfruit salad: Mix sliced bananas and dragonfruits together with some lemon juice and honey."},
|
| 86 |
+
{"role": "user", "content": "What about solving an 2x + 3 = 7 equation?"},
|
| 87 |
+
]
|
| 88 |
+
|
| 89 |
+
pipe = pipeline(
|
| 90 |
+
"text-generation",
|
| 91 |
+
model=model,
|
| 92 |
+
tokenizer=tokenizer,
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
generation_args = {
|
| 96 |
+
"max_new_tokens": 500,
|
| 97 |
+
"return_full_text": False,
|
| 98 |
+
"temperature": 0.0,
|
| 99 |
+
"do_sample": False,
|
| 100 |
+
}
|
| 101 |
+
|
| 102 |
+
output = pipe(messages, **generation_args)
|
| 103 |
+
print(output[0]['generated_text'])
|
| 104 |
+
```
|
| 105 |
|
| 106 |
# Quantization Recipe
|
| 107 |
|