jerryzh168 commited on
Commit
a7bb628
·
verified ·
1 Parent(s): 5c4bc2d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +141 -194
README.md CHANGED
@@ -3,197 +3,144 @@ library_name: transformers
3
  tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
3
  tags: []
4
  ---
5
 
6
+ [Phi4-mini](https://huggingface.co/microsoft/Phi-4-mini-instruct) model quantized with [torchao](https://huggingface.co/docs/transformers/main/en/quantization/torchao) float8 dynamic activation and float8 weight quantization (per row granularity), by PyTorch team.
7
+
8
+ # Quantization Recipe
9
+ We used following code to get the quantized model:
10
+
11
+ ```
12
+ import torch
13
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig
14
+
15
+ model_id = "microsoft/Phi-4-mini-instruct"
16
+
17
+ from torchao.quantization import Float8DynamicActivationFloat8WeightConfig, PerRow
18
+ quant_config = Float8DynamicActivationFloat8WeightConfig(granularity=PerRow())
19
+ quantization_config = TorchAoConfig(quant_type=quant_config)
20
+ quantized_model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", quantization_config=quantization_config)
21
+
22
+ # Push to hub
23
+ USER_ID = "YOUR_USER_ID"
24
+ save_to = "{USER_ID}/{model_id}-int4wo"
25
+ quantized_model.push_to_hub(save_to, safe_serialization=False)
26
+
27
+
28
+ # Manual Testing
29
+ messages = [
30
+ {"role": "system", "content": "You are a medieval knight and must provide explanations to modern people."},
31
+ {"role": "user", "content": "How should I explain the Internet?"},
32
+ ]
33
+
34
+ prompt = "Hey, are you conscious? Can you talk to me?"
35
+ inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
36
+ generated_ids = quantized_model.generate(**inputs, max_new_tokens=128)
37
+ output_text = tokenizer.batch_decode(
38
+ generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
39
+ )
40
+ print(output_text)
41
+
42
+ # Local Benchmark
43
+ import torch.utils.benchmark as benchmark
44
+ from torchao.utils import benchmark_model
45
+ import torchao
46
+
47
+ def benchmark_fn(f, *args, **kwargs):
48
+ # Manual warmup
49
+ for _ in range(2):
50
+ f(*args, **kwargs)
51
+
52
+ t0 = benchmark.Timer(
53
+ stmt="f(*args, **kwargs)",
54
+ globals={"args": args, "kwargs": kwargs, "f": f},
55
+ num_threads=torch.get_num_threads(),
56
+ )
57
+ return f"{(t0.blocked_autorange().mean):.3f}"
58
+
59
+ torchao.quantization.utils.recommended_inductor_config_setter()
60
+ quantized_model = torch.compile(quantized_model, mode="max-autotune")
61
+ print(f"{save_to} model:", benchmark_fn(quantized_model.generate, **inputs, max_new_tokens=128))
62
+ ```
63
+ # Model Quality
64
+ We rely on [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) to evaluate the quality of the quantized model.
65
+
66
+ # Installing the nightly version to get most recent updates
67
+ ```
68
+ pip install git+https://github.com/EleutherAI/lm-evaluation-harness
69
+ ```
70
+
71
+ # baseline
72
+ ```
73
+ lm_eval --model hf --model_args pretrained=microsoft/Phi-4-mini-instruct --tasks hellaswag --device cuda:0 --batch_size 8
74
+ ```
75
+
76
+ # float8dq
77
+ ```
78
+ lm_eval --model hf --model_args pretrained=jerryzh168/phi4-mini-float8dq --tasks hellaswag --device cuda:0 --batch_size 8
79
+ ```
80
+
81
+ `TODO: more complete eval results`
82
+
83
+
84
+ | Benchmark | | |
85
+ |----------------------------------|-------------|-------------------|
86
+ | | Phi-4 mini-Ins | phi4-mini-float8dq |
87
+ | **Popular aggregated benchmark** | | |
88
+ | **Reasoning** | | |
89
+ | HellaSwag | 54.57 | 54.55 |
90
+ | **Multilingual** | | |
91
+ | **Math** | | |
92
+ | **Overall** | **TODO** | **TODO** |
93
+
94
+ # Model Performance
95
+
96
+ # Install latest vllm to get the most recent changes
97
+ ```
98
+ pip install git+https://github.com/vllm-project/vllm.git
99
+ ```
100
+
101
+ # Download dataset
102
+ Download sharegpt dataset: `wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json`
103
+
104
+ Other datasets can be found in: https://github.com/vllm-project/vllm/tree/main/benchmarks
105
+ # benchmark_latency
106
+ ## baseline
107
+ ```
108
+ python benchmarks/benchmark_latency.py --input-len 256 --output-len 256 --model microsoft/Phi-4-mini-instruct --batch-size 1
109
+ ```
110
+
111
+ ## float8dq
112
+ ```
113
+ python benchmarks/benchmark_latency.py --input-len 256 --output-len 256 --model jerryzh168/phi4-mini-float8dq --batch-size 1
114
+ ```
115
+
116
+ # benchmark_serving
117
+
118
+ We also benchmarked the throughput in a serving environment.
119
+
120
+ ## baseline
121
+ Server:
122
+ ```
123
+ vllm serve microsoft/Phi-4-mini-instruct --tokenizer microsoft/Phi-4-mini-instruct -O3
124
+ ```
125
+
126
+ Client:
127
+ ```
128
+ python benchmarks/benchmark_serving.py --backend vllm --dataset-name sharegpt --tokenizer microsoft/Phi-4-mini-instruct --dataset-path ./ShareGPT_V3_unfiltered_cleaned_split.json --model microsoft/Phi-4-mini-instruct --num-prompts 1
129
+ ```
130
+
131
+ ## float8dq
132
+ Server:
133
+ ```
134
+ vllm serve jerryzh168/phi4-mini-float8dq --tokenizer microsoft/Phi-4-mini-instruct -O3
135
+ ```
136
+
137
+ Client:
138
+ ```
139
+ python benchmarks/benchmark_serving.py --backend vllm --dataset-name sharegpt --tokenizer microsoft/Phi-4-mini-instruct --dataset-path ./ShareGPT_V3_unfiltered_cleaned_split.json --model jerryzh168/phi4-mini-int4wo-hqq --num-prompts 1
140
+ ```
141
+
142
+ # Serving with vllm
143
+ We can use the same command we used in serving benchmarks to serve the model with vllm
144
+ ```
145
+ vllm serve jerryzh168/phi4-mini-float8dq --tokenizer microsoft/Phi-4-mini-instruct -O3
146
+ ```