Update README.md
Browse files
README.md
CHANGED
@@ -3,197 +3,144 @@ library_name: transformers
|
|
3 |
tags: []
|
4 |
---
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
3 |
tags: []
|
4 |
---
|
5 |
|
6 |
+
[Phi4-mini](https://huggingface.co/microsoft/Phi-4-mini-instruct) model quantized with [torchao](https://huggingface.co/docs/transformers/main/en/quantization/torchao) float8 dynamic activation and float8 weight quantization (per row granularity), by PyTorch team.
|
7 |
+
|
8 |
+
# Quantization Recipe
|
9 |
+
We used following code to get the quantized model:
|
10 |
+
|
11 |
+
```
|
12 |
+
import torch
|
13 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig
|
14 |
+
|
15 |
+
model_id = "microsoft/Phi-4-mini-instruct"
|
16 |
+
|
17 |
+
from torchao.quantization import Float8DynamicActivationFloat8WeightConfig, PerRow
|
18 |
+
quant_config = Float8DynamicActivationFloat8WeightConfig(granularity=PerRow())
|
19 |
+
quantization_config = TorchAoConfig(quant_type=quant_config)
|
20 |
+
quantized_model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", quantization_config=quantization_config)
|
21 |
+
|
22 |
+
# Push to hub
|
23 |
+
USER_ID = "YOUR_USER_ID"
|
24 |
+
save_to = "{USER_ID}/{model_id}-int4wo"
|
25 |
+
quantized_model.push_to_hub(save_to, safe_serialization=False)
|
26 |
+
|
27 |
+
|
28 |
+
# Manual Testing
|
29 |
+
messages = [
|
30 |
+
{"role": "system", "content": "You are a medieval knight and must provide explanations to modern people."},
|
31 |
+
{"role": "user", "content": "How should I explain the Internet?"},
|
32 |
+
]
|
33 |
+
|
34 |
+
prompt = "Hey, are you conscious? Can you talk to me?"
|
35 |
+
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
36 |
+
generated_ids = quantized_model.generate(**inputs, max_new_tokens=128)
|
37 |
+
output_text = tokenizer.batch_decode(
|
38 |
+
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
39 |
+
)
|
40 |
+
print(output_text)
|
41 |
+
|
42 |
+
# Local Benchmark
|
43 |
+
import torch.utils.benchmark as benchmark
|
44 |
+
from torchao.utils import benchmark_model
|
45 |
+
import torchao
|
46 |
+
|
47 |
+
def benchmark_fn(f, *args, **kwargs):
|
48 |
+
# Manual warmup
|
49 |
+
for _ in range(2):
|
50 |
+
f(*args, **kwargs)
|
51 |
+
|
52 |
+
t0 = benchmark.Timer(
|
53 |
+
stmt="f(*args, **kwargs)",
|
54 |
+
globals={"args": args, "kwargs": kwargs, "f": f},
|
55 |
+
num_threads=torch.get_num_threads(),
|
56 |
+
)
|
57 |
+
return f"{(t0.blocked_autorange().mean):.3f}"
|
58 |
+
|
59 |
+
torchao.quantization.utils.recommended_inductor_config_setter()
|
60 |
+
quantized_model = torch.compile(quantized_model, mode="max-autotune")
|
61 |
+
print(f"{save_to} model:", benchmark_fn(quantized_model.generate, **inputs, max_new_tokens=128))
|
62 |
+
```
|
63 |
+
# Model Quality
|
64 |
+
We rely on [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) to evaluate the quality of the quantized model.
|
65 |
+
|
66 |
+
# Installing the nightly version to get most recent updates
|
67 |
+
```
|
68 |
+
pip install git+https://github.com/EleutherAI/lm-evaluation-harness
|
69 |
+
```
|
70 |
+
|
71 |
+
# baseline
|
72 |
+
```
|
73 |
+
lm_eval --model hf --model_args pretrained=microsoft/Phi-4-mini-instruct --tasks hellaswag --device cuda:0 --batch_size 8
|
74 |
+
```
|
75 |
+
|
76 |
+
# float8dq
|
77 |
+
```
|
78 |
+
lm_eval --model hf --model_args pretrained=jerryzh168/phi4-mini-float8dq --tasks hellaswag --device cuda:0 --batch_size 8
|
79 |
+
```
|
80 |
+
|
81 |
+
`TODO: more complete eval results`
|
82 |
+
|
83 |
+
|
84 |
+
| Benchmark | | |
|
85 |
+
|----------------------------------|-------------|-------------------|
|
86 |
+
| | Phi-4 mini-Ins | phi4-mini-float8dq |
|
87 |
+
| **Popular aggregated benchmark** | | |
|
88 |
+
| **Reasoning** | | |
|
89 |
+
| HellaSwag | 54.57 | 54.55 |
|
90 |
+
| **Multilingual** | | |
|
91 |
+
| **Math** | | |
|
92 |
+
| **Overall** | **TODO** | **TODO** |
|
93 |
+
|
94 |
+
# Model Performance
|
95 |
+
|
96 |
+
# Install latest vllm to get the most recent changes
|
97 |
+
```
|
98 |
+
pip install git+https://github.com/vllm-project/vllm.git
|
99 |
+
```
|
100 |
+
|
101 |
+
# Download dataset
|
102 |
+
Download sharegpt dataset: `wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json`
|
103 |
+
|
104 |
+
Other datasets can be found in: https://github.com/vllm-project/vllm/tree/main/benchmarks
|
105 |
+
# benchmark_latency
|
106 |
+
## baseline
|
107 |
+
```
|
108 |
+
python benchmarks/benchmark_latency.py --input-len 256 --output-len 256 --model microsoft/Phi-4-mini-instruct --batch-size 1
|
109 |
+
```
|
110 |
+
|
111 |
+
## float8dq
|
112 |
+
```
|
113 |
+
python benchmarks/benchmark_latency.py --input-len 256 --output-len 256 --model jerryzh168/phi4-mini-float8dq --batch-size 1
|
114 |
+
```
|
115 |
+
|
116 |
+
# benchmark_serving
|
117 |
+
|
118 |
+
We also benchmarked the throughput in a serving environment.
|
119 |
+
|
120 |
+
## baseline
|
121 |
+
Server:
|
122 |
+
```
|
123 |
+
vllm serve microsoft/Phi-4-mini-instruct --tokenizer microsoft/Phi-4-mini-instruct -O3
|
124 |
+
```
|
125 |
+
|
126 |
+
Client:
|
127 |
+
```
|
128 |
+
python benchmarks/benchmark_serving.py --backend vllm --dataset-name sharegpt --tokenizer microsoft/Phi-4-mini-instruct --dataset-path ./ShareGPT_V3_unfiltered_cleaned_split.json --model microsoft/Phi-4-mini-instruct --num-prompts 1
|
129 |
+
```
|
130 |
+
|
131 |
+
## float8dq
|
132 |
+
Server:
|
133 |
+
```
|
134 |
+
vllm serve jerryzh168/phi4-mini-float8dq --tokenizer microsoft/Phi-4-mini-instruct -O3
|
135 |
+
```
|
136 |
+
|
137 |
+
Client:
|
138 |
+
```
|
139 |
+
python benchmarks/benchmark_serving.py --backend vllm --dataset-name sharegpt --tokenizer microsoft/Phi-4-mini-instruct --dataset-path ./ShareGPT_V3_unfiltered_cleaned_split.json --model jerryzh168/phi4-mini-int4wo-hqq --num-prompts 1
|
140 |
+
```
|
141 |
+
|
142 |
+
# Serving with vllm
|
143 |
+
We can use the same command we used in serving benchmarks to serve the model with vllm
|
144 |
+
```
|
145 |
+
vllm serve jerryzh168/phi4-mini-float8dq --tokenizer microsoft/Phi-4-mini-instruct -O3
|
146 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|