supriyar commited on
Commit
cdb7a31
·
verified ·
1 Parent(s): c7c9ad4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -4
README.md CHANGED
@@ -17,12 +17,12 @@ base_model:
17
  pipeline_tag: text-generation
18
  ---
19
 
20
- [Phi4-mini](https://huggingface.co/microsoft/Phi-4-mini-instruct) model quantized with [torchao](https://huggingface.co/docs/transformers/main/en/quantization/torchao) float8 dynamic activation and float8 weight quantization (per row granularity), by PyTorch team.
21
 
22
 
23
  # Quantization Recipe
24
 
25
- First need to install the required packages:
26
 
27
  ```
28
  pip install git+https://github.com/huggingface/transformers@main
@@ -31,7 +31,7 @@ pip install torch
31
  pip install accelerate
32
  ```
33
 
34
- We used following code to get the quantized model:
35
 
36
  ```
37
  import torch
@@ -131,7 +131,6 @@ lm_eval --model hf --model_args pretrained=pytorch/Phi-4-mini-instruct-float8dq
131
 
132
  # Peak Memory Usage
133
 
134
- We can use the following code to get a sense of peak memory usage during inference:
135
 
136
  ## Results
137
 
@@ -143,6 +142,9 @@ We can use the following code to get a sense of peak memory usage during inferen
143
 
144
  ## Benchmark Peak Memory
145
 
 
 
 
146
  ```
147
  import torch
148
  from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig
 
17
  pipeline_tag: text-generation
18
  ---
19
 
20
+ [Phi4-mini](https://huggingface.co/microsoft/Phi-4-mini-instruct) model quantized with [torchao](https://huggingface.co/docs/transformers/main/en/quantization/torchao) float8 dynamic activation and float8 weight quantization (per row granularity), by PyTorch team. Use it directly, or serve using [vLLM](https://docs.vllm.ai/en/latest/) with 36% VRAM reduction, 15-20% speedup and little to no accuracy impact on H100.
21
 
22
 
23
  # Quantization Recipe
24
 
25
+ Install the required packages:
26
 
27
  ```
28
  pip install git+https://github.com/huggingface/transformers@main
 
31
  pip install accelerate
32
  ```
33
 
34
+ Use the following code to get the quantized model:
35
 
36
  ```
37
  import torch
 
131
 
132
  # Peak Memory Usage
133
 
 
134
 
135
  ## Results
136
 
 
142
 
143
  ## Benchmark Peak Memory
144
 
145
+ We can use the following code to get a sense of peak memory usage during inference:
146
+
147
+
148
  ```
149
  import torch
150
  from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig