Update README.md
Browse files
README.md
CHANGED
@@ -121,6 +121,60 @@ lm_eval --model hf --model_args pretrained=pytorch/Phi-4-mini-instruct-float8dq
|
|
121 |
| mathqa (0-shot) | 42.31 | 42.51 |
|
122 |
| **Overall** | **TODO** | **TODO** |
|
123 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
# Model Performance
|
125 |
|
126 |
Need to install vllm nightly to get some recent changes
|
|
|
121 |
| mathqa (0-shot) | 42.31 | 42.51 |
|
122 |
| **Overall** | **TODO** | **TODO** |
|
123 |
|
124 |
+
# Peak Memory Usage
|
125 |
+
|
126 |
+
We can use the following code to get a sense of peak memory usage during inference:
|
127 |
+
|
128 |
+
## Results
|
129 |
+
|
130 |
+
| Benchmark | | |
|
131 |
+
|------------------|----------------|--------------------------------|
|
132 |
+
| | Phi-4 mini-Ins | Phi-4-mini-instruct-float8dq |
|
133 |
+
| Peak Memory (GB) | 8.91 | 5.70 |
|
134 |
+
|
135 |
+
|
136 |
+
## Benchmark Peak Memory
|
137 |
+
|
138 |
+
```
|
139 |
+
import torch
|
140 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig
|
141 |
+
|
142 |
+
# use "microsoft/Phi-4-mini-instruct" or "pytorch/Phi-4-mini-instruct-float8dq"
|
143 |
+
model_id = "microsoft/Phi-4-mini-instruct"
|
144 |
+
quantized_model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16)
|
145 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
146 |
+
|
147 |
+
torch.cuda.reset_peak_memory_stats()
|
148 |
+
|
149 |
+
prompt = "Hey, are you conscious? Can you talk to me?"
|
150 |
+
messages = [
|
151 |
+
{
|
152 |
+
"role": "system",
|
153 |
+
"content": "",
|
154 |
+
},
|
155 |
+
{"role": "user", "content": prompt},
|
156 |
+
]
|
157 |
+
templated_prompt = tokenizer.apply_chat_template(
|
158 |
+
messages,
|
159 |
+
tokenize=False,
|
160 |
+
add_generation_prompt=True,
|
161 |
+
)
|
162 |
+
print("Prompt:", prompt)
|
163 |
+
print("Templated prompt:", templated_prompt)
|
164 |
+
inputs = tokenizer(
|
165 |
+
templated_prompt,
|
166 |
+
return_tensors="pt",
|
167 |
+
).to("cuda")
|
168 |
+
generated_ids = quantized_model.generate(**inputs, max_new_tokens=128)
|
169 |
+
output_text = tokenizer.batch_decode(
|
170 |
+
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
171 |
+
)
|
172 |
+
print("Response:", output_text[0][len(prompt):])
|
173 |
+
|
174 |
+
mem = torch.cuda.max_memory_reserved() / 1e9
|
175 |
+
print(f"Peak Memory Usage: {mem:.02f} GB")
|
176 |
+
```
|
177 |
+
|
178 |
# Model Performance
|
179 |
|
180 |
Need to install vllm nightly to get some recent changes
|