--- library_name: transformers tags: - torchao - code - math - chat license: apache-2.0 language: - multilingual base_model: - Qwen/Qwen3-32B pipeline_tag: text-generation --- [Qwen3-32B](https://huggingface.co/Qwen/Qwen3-32B) model quantized with [torchao](https://huggingface.co/docs/transformers/main/en/quantization/torchao) float8 dynamic activation and float8 weight quantization (per row granularity), by PyTorch team. Use it directly, or serve using [vLLM](https://docs.vllm.ai/en/latest/) with 47% VRAM reduction, around 1.5x speedup and little to no accuracy impact on H100. # Inference with vLLM ```Shell # Server VLLM_DISABLE_COMPILE_CACHE=1 vllm serve pytorch/Qwen3-32B-float8dq --tokenizer Qwen/Qwen3-32B -O3 ``` ```Shell # Client curl http://localhost:8000/v1/chat/completions -H "Content-Type: application/json" -d '{ "model": "pytorch/Qwen3-32B-float8dq", "messages": [ {"role": "user", "content": "Give me a short introduction to large language models."} ], "temperature": 0.6, "top_p": 0.95, "top_k": 20, "max_tokens": 32768 }' ``` # Inference with transformers ```Py import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "pytorch/Qwen3-32B-float8dq" # load the tokenizer and the model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) # prepare the model input prompt = "Give me a short introduction to large language model." messages = [ {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=True # Switches between thinking and non-thinking modes. Default is True. ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) # conduct text completion generated_ids = model.generate( **model_inputs, max_new_tokens=32768 ) output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() # parsing thinking content try: # rindex finding 151668 () index = len(output_ids) - output_ids[::-1].index(151668) except ValueError: index = 0 thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n") content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n") print("thinking content:", thinking_content) print("content:", content) ``` # Quantization Recipe Install the required packages: ```Shell pip install git+https://github.com/huggingface/transformers@main pip install torchao pip install torch pip install accelerate ``` Use the following code to get the float8 model using torchao library: ```Py import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig model_id = "Qwen/Qwen3-32B" from torchao.quantization import Float8DynamicActivationFloat8WeightConfig, PerRow quant_config = Float8DynamicActivationFloat8WeightConfig(granularity=PerRow()) quantization_config = TorchAoConfig(quant_type=quant_config) quantized_model = AutoModelForCausalLM.from_pretrained( model_id, device_map="auto", torch_dtype=torch.bfloat16, quantization_config=quantization_config, ) tokenizer = AutoTokenizer.from_pretrained(model_id) ``` Optionally, upload to your HF hub ```Py USER_ID = "YOUR_USER_ID" MODEL_NAME = model_id.split("/")[-1] save_to = f"{USER_ID}/{MODEL_NAME}-float8dq" quantized_model.push_to_hub(save_to, safe_serialization=False) tokenizer.push_to_hub(save_to) ``` # Model Quality We rely on [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) to evaluate the quality of the quantized model. | Benchmark | | | |----------------------------------|----------------|---------------------------| | | Qwen3-32B | Qwen3-32B-float8dq | | **General** | | | | mmlu | 80.71 | 80.67 | | bbh | 37.49 | 38.01 | | **Multilingual** | | | | mgsm_en_cot_es | 58.4 | 52.0 | | **Math** | | | | gpqa_main_zeroshot | 41.96 | 42.63 | | **Overall** | 54.64 | 53.33 |
Reproduce Model Quality Results Need to install lm-eval from source: https://github.com/EleutherAI/lm-evaluation-harness#install ## baseline ```Shell lm_eval --model hf --model_args pretrained=Qwen/Qwen3-32B --tasks mmlu --device cuda:0 --batch_size 8 ``` ## float8 dynamic quantization (float8dq) ```Shell export MODEL=pytorch/Qwen3-32B-float8dq # or # export MODEL=Qwen/Qwen3-32B lm_eval --model hf --model_args pretrained=$MODEL --tasks mmlu --device cuda:0 --batch_size 8 ```
# Memory Usage | Memory (tested on H100) | | | |----------------------------------|----------------|-------------------------------| | | Qwen3-32B | Qwen3-32B-float8dq | | Peak Memory | 65.72 GB | 34.54 GB (47.44% reduction) |
Reproduce Peak Memory Usage Results Code ```Py import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Qwen/Qwen3-32B" # pytorch/Qwen3-32B-float8dq # load the tokenizer and the model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) torch.cuda.reset_peak_memory_stats() # prepare the model input prompt = "Give me a short introduction to large language model." messages = [ {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=True # Switches between thinking and non-thinking modes. Default is True. ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) # conduct text completion generated_ids = model.generate( **model_inputs, max_new_tokens=32768 ) output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() # parsing thinking content try: # rindex finding 151668 () index = len(output_ids) - output_ids[::-1].index(151668) except ValueError: index = 0 thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n") content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n") print("thinking content:", thinking_content) print("content:", content) mem = torch.cuda.max_memory_reserved() / 1e9 print(f"Peak Memory Usage: {mem:.02f} GB") ```
# Model Performance | Benchmark (Tested on H100) | | | |----------------------------------|----------------|-------------------------------| | | Qwen3-32B | Qwen3-32B-float8dq | | latency (batch_size=1) | 9.1s | 5.77s (1.58x speedup) | | latency (batch_size=128) | 12.45s | 8.40s (1.48x speedup) |
Reproduce latency benchmarks **1. Setup** ```Shell git clone git@github.com:vllm-project/vllm.git cd vllm VLLM_USE_PRECOMPILED=1 pip install --editable . ``` **2. Latency benchmarking** ```Shell export MODEL=Qwen/Qwen3-32B # or pytorch/Qwen3-32B-float8dq VLLM_DISABLE_COMPILE_CACHE=1 python benchmarks/benchmark_latency.py --input-len 256 --output-len 256 --model $MODEL --batch-size 1 ```
# Disclaimer PyTorch has not performed safety evaluations or red teamed the quantized models. Performance characteristics, outputs, and behaviors may differ from the original models. Users are solely responsible for selecting appropriate use cases, evaluating and mitigating for accuracy, safety, and fairness, ensuring security, and complying with all applicable laws and regulations. Nothing contained in this Model Card should be interpreted as or deemed a restriction or modification to the licenses the models are released under, including any limitations of liability or disclaimers of warranties provided therein.