|  | import math | 
					
						
						|  | from typing import Any, Optional, Tuple, Union | 
					
						
						|  |  | 
					
						
						|  | from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, BaseModelOutputWithPastAndCrossAttentions | 
					
						
						|  | from transformers.modeling_utils import PreTrainedModel | 
					
						
						|  | from transformers.pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer | 
					
						
						|  |  | 
					
						
						|  | import numpy as np | 
					
						
						|  | import torch | 
					
						
						|  | import torch.nn as nn | 
					
						
						|  | import torch.utils.checkpoint | 
					
						
						|  | from icecream import ic | 
					
						
						|  |  | 
					
						
						|  | def get_abs_pos(abs_pos, tgt_size): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | src_size = int(math.sqrt(abs_pos.size(0))) | 
					
						
						|  | tgt_size = int(math.sqrt(tgt_size)) | 
					
						
						|  | dtype = abs_pos.dtype | 
					
						
						|  |  | 
					
						
						|  | if src_size != tgt_size: | 
					
						
						|  | return F.interpolate( | 
					
						
						|  | abs_pos.float().reshape(1, src_size, src_size, -1).permute(0, 3, 1, 2), | 
					
						
						|  | size=(tgt_size, tgt_size), | 
					
						
						|  | mode="bicubic", | 
					
						
						|  | align_corners=False, | 
					
						
						|  | ).permute(0, 2, 3, 1).flatten(0, 2).to(dtype=dtype) | 
					
						
						|  | else: | 
					
						
						|  | return abs_pos | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False): | 
					
						
						|  | """ | 
					
						
						|  | grid_size: int of the grid height and width | 
					
						
						|  | return: | 
					
						
						|  | pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) | 
					
						
						|  | """ | 
					
						
						|  | grid_h = np.arange(grid_size, dtype=np.float32) | 
					
						
						|  | grid_w = np.arange(grid_size, dtype=np.float32) | 
					
						
						|  | grid = np.meshgrid(grid_w, grid_h) | 
					
						
						|  | grid = np.stack(grid, axis=0) | 
					
						
						|  |  | 
					
						
						|  | grid = grid.reshape([2, 1, grid_size, grid_size]) | 
					
						
						|  | pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) | 
					
						
						|  | if cls_token: | 
					
						
						|  | pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0) | 
					
						
						|  | return pos_embed | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): | 
					
						
						|  | assert embed_dim % 2 == 0 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) | 
					
						
						|  | emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) | 
					
						
						|  |  | 
					
						
						|  | emb = np.concatenate([emb_h, emb_w], axis=1) | 
					
						
						|  | return emb | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): | 
					
						
						|  | """ | 
					
						
						|  | embed_dim: output dimension for each position | 
					
						
						|  | pos: a list of positions to be encoded: size (M,) | 
					
						
						|  | out: (M, D) | 
					
						
						|  | """ | 
					
						
						|  | assert embed_dim % 2 == 0 | 
					
						
						|  | omega = np.arange(embed_dim // 2, dtype=np.float32) | 
					
						
						|  | omega /= embed_dim / 2. | 
					
						
						|  | omega = 1. / 10000**omega | 
					
						
						|  |  | 
					
						
						|  | pos = pos.reshape(-1) | 
					
						
						|  | out = np.einsum('m,d->md', pos, omega) | 
					
						
						|  |  | 
					
						
						|  | emb_sin = np.sin(out) | 
					
						
						|  | emb_cos = np.cos(out) | 
					
						
						|  |  | 
					
						
						|  | emb = np.concatenate([emb_sin, emb_cos], axis=1) | 
					
						
						|  | return emb | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MplugOwlVisionEmbeddings(nn.Module): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | self.hidden_size = config.hidden_size | 
					
						
						|  | self.image_size = config.image_size | 
					
						
						|  | self.patch_size = config.patch_size | 
					
						
						|  |  | 
					
						
						|  | self.cls_token = nn.Parameter(torch.randn(1, 1, self.hidden_size)) | 
					
						
						|  |  | 
					
						
						|  | self.patch_embed = nn.Conv2d( | 
					
						
						|  | in_channels=3, | 
					
						
						|  | out_channels=self.hidden_size, | 
					
						
						|  | kernel_size=self.patch_size, | 
					
						
						|  | stride=self.patch_size, | 
					
						
						|  | bias=False, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.num_patches = (self.image_size // self.patch_size) ** 2 | 
					
						
						|  |  | 
					
						
						|  | self.position_embedding = nn.Parameter(torch.randn(1, self.num_patches + 1, self.hidden_size)) | 
					
						
						|  |  | 
					
						
						|  | self.pre_layernorm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: | 
					
						
						|  | batch_size = pixel_values.size(0) | 
					
						
						|  | image_embeds = self.patch_embed(pixel_values) | 
					
						
						|  | image_embeds = image_embeds.flatten(2).transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | class_embeds = self.cls_token.expand(batch_size, 1, -1).to(image_embeds.dtype) | 
					
						
						|  | embeddings = torch.cat([class_embeds, image_embeds], dim=1) | 
					
						
						|  | embeddings = embeddings + self.position_embedding[:, : embeddings.size(1)].to(image_embeds.dtype) | 
					
						
						|  | embeddings = self.pre_layernorm(embeddings) | 
					
						
						|  | return embeddings | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MplugOwlVisionAttention(nn.Module): | 
					
						
						|  | """Multi-headed attention from 'Attention Is All You Need' paper""" | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | self.hidden_size = config.hidden_size | 
					
						
						|  | self.num_heads = config.num_attention_heads | 
					
						
						|  | self.head_dim = self.hidden_size // self.num_heads | 
					
						
						|  | if self.head_dim * self.num_heads != self.hidden_size: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:" | 
					
						
						|  | f" {self.num_heads})." | 
					
						
						|  | ) | 
					
						
						|  | self.scale = self.head_dim**-0.5 | 
					
						
						|  | self.dropout = nn.Dropout(config.attention_dropout) | 
					
						
						|  |  | 
					
						
						|  | self.query_key_value = nn.Linear(self.hidden_size, 3 * self.hidden_size) | 
					
						
						|  | self.dense = nn.Linear(self.hidden_size, self.hidden_size) | 
					
						
						|  |  | 
					
						
						|  | def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | 
					
						
						|  | return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | head_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | output_attentions: Optional[bool] = False, | 
					
						
						|  | ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | 
					
						
						|  | """Input shape: Batch x Time x Channel""" | 
					
						
						|  |  | 
					
						
						|  | bsz, seq_len, embed_dim = hidden_states.size() | 
					
						
						|  |  | 
					
						
						|  | mixed_qkv = self.query_key_value(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | mixed_qkv = mixed_qkv.reshape(bsz, seq_len, self.num_heads, 3, embed_dim // self.num_heads).permute( | 
					
						
						|  | 3, 0, 2, 1, 4 | 
					
						
						|  | ) | 
					
						
						|  | query_states, key_states, value_states = ( | 
					
						
						|  | mixed_qkv[0], | 
					
						
						|  | mixed_qkv[1], | 
					
						
						|  | mixed_qkv[2], | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if False: | 
					
						
						|  |  | 
					
						
						|  | query_states = query_states.permute(0, 2, 1, 3).contiguous() | 
					
						
						|  | query_states = query_states.view(query_states.size(0) * query_states.size(1), query_states.size(2), -1) | 
					
						
						|  |  | 
					
						
						|  | key_states = key_states.permute(0, 2, 1, 3).contiguous() | 
					
						
						|  | key_states = key_states.view(key_states.size(0) * key_states.size(1), key_states.size(2), -1) | 
					
						
						|  |  | 
					
						
						|  | value_states = value_states.permute(0, 2, 1, 3).contiguous() | 
					
						
						|  | value_states = value_states.view(value_states.size(0) * value_states.size(1), value_states.size(2), -1) | 
					
						
						|  |  | 
					
						
						|  | cu_seqlens = torch.arange( | 
					
						
						|  | 0, (bsz + 1) * seq_len, step=seq_len, dtype=torch.int32, device=query_states.device | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | context_layer = flash_attn_func( | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | value_states, | 
					
						
						|  | cu_seqlens, | 
					
						
						|  | cu_seqlens, | 
					
						
						|  | seq_len, | 
					
						
						|  | seq_len, | 
					
						
						|  | self.dropout if self.training else 0.0, | 
					
						
						|  | softmax_scale=self.scale, | 
					
						
						|  | causal=False, | 
					
						
						|  | return_attn_probs=False, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | context_layer = context_layer.view(bsz, seq_len, context_layer.size(1), context_layer.size(2)) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2)) | 
					
						
						|  |  | 
					
						
						|  | attention_scores = attention_scores * self.scale | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attention_probs = torch.softmax(attention_scores, dim=-1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attention_probs = self.dropout(attention_probs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if head_mask is not None: | 
					
						
						|  | attention_probs = attention_probs * head_mask | 
					
						
						|  |  | 
					
						
						|  | context_layer = torch.matmul(attention_probs, value_states).permute(0, 2, 1, 3) | 
					
						
						|  |  | 
					
						
						|  | new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size,) | 
					
						
						|  | context_layer = context_layer.reshape(new_context_layer_shape) | 
					
						
						|  |  | 
					
						
						|  | output = self.dense(context_layer) | 
					
						
						|  |  | 
					
						
						|  | outputs = (output, attention_probs) if output_attentions else (output, None) | 
					
						
						|  |  | 
					
						
						|  | return outputs | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class QuickGELU(nn.Module): | 
					
						
						|  | def forward(self, x: torch.Tensor): | 
					
						
						|  | return x * torch.sigmoid(1.702 * x) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MplugOwlMLP(nn.Module): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | self.activation_fn = QuickGELU() | 
					
						
						|  | self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) | 
					
						
						|  | self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | hidden_states = self.fc1(hidden_states) | 
					
						
						|  | hidden_states = self.activation_fn(hidden_states) | 
					
						
						|  | hidden_states = self.fc2(hidden_states) | 
					
						
						|  | return hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MplugOwlVisionEncoderLayer(nn.Module): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.hidden_size = config.hidden_size | 
					
						
						|  | self.self_attn = MplugOwlVisionAttention(config) | 
					
						
						|  | self.input_layernorm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps) | 
					
						
						|  | self.mlp = MplugOwlMLP(config) | 
					
						
						|  | self.post_attention_layernorm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_mask: torch.Tensor, | 
					
						
						|  | output_attentions: Optional[bool] = False, | 
					
						
						|  | ) -> Tuple[torch.FloatTensor]: | 
					
						
						|  | """ | 
					
						
						|  | Args: | 
					
						
						|  | hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | 
					
						
						|  | attention_mask (`torch.FloatTensor`): attention mask of size | 
					
						
						|  | `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | 
					
						
						|  | `(config.encoder_attention_heads,)`. | 
					
						
						|  | output_attentions (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the attentions tensors of all attention layers. See `attentions` under | 
					
						
						|  | returned tensors for more detail. | 
					
						
						|  | """ | 
					
						
						|  | residual = hidden_states | 
					
						
						|  |  | 
					
						
						|  | hidden_states = self.input_layernorm(hidden_states) | 
					
						
						|  | hidden_states, attn_weights = self.self_attn( | 
					
						
						|  | hidden_states=hidden_states, | 
					
						
						|  | head_mask=attention_mask, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | ) | 
					
						
						|  | hidden_states = hidden_states + residual | 
					
						
						|  | residual = hidden_states | 
					
						
						|  | hidden_states = self.post_attention_layernorm(hidden_states) | 
					
						
						|  | hidden_states = self.mlp(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = hidden_states + residual | 
					
						
						|  |  | 
					
						
						|  | outputs = (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | if output_attentions: | 
					
						
						|  | outputs += (attn_weights,) | 
					
						
						|  |  | 
					
						
						|  | return outputs | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MplugOwlVisionEncoder(nn.Module): | 
					
						
						|  | """ | 
					
						
						|  | Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a | 
					
						
						|  | [`MplugOwlVisionEncoderLayer`]. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | config (`MplugOwlVisionConfig`): | 
					
						
						|  | The corresponding vision configuration for the `MplugOwlEncoder`. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | self.layers = nn.ModuleList([MplugOwlVisionEncoderLayer(config) for _ in range(config.num_hidden_layers)]) | 
					
						
						|  | self.gradient_checkpointing = True | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | inputs_embeds, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | ) -> Union[Tuple, BaseModelOutput]: | 
					
						
						|  | r""" | 
					
						
						|  | Args: | 
					
						
						|  | inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | 
					
						
						|  | Embedded representation of the inputs. Should be float, not int tokens. | 
					
						
						|  | attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
						
						|  | Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | 
					
						
						|  |  | 
					
						
						|  | - 1 for tokens that are **not masked**, | 
					
						
						|  | - 0 for tokens that are **masked**. | 
					
						
						|  |  | 
					
						
						|  | [What are attention masks?](../glossary#attention-mask) | 
					
						
						|  | output_attentions (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the attentions tensors of all attention layers. See `attentions` under | 
					
						
						|  | returned tensors for more detail. | 
					
						
						|  | output_hidden_states (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors | 
					
						
						|  | for more detail. | 
					
						
						|  | return_dict (`bool`, *optional*): | 
					
						
						|  | Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | 
					
						
						|  | """ | 
					
						
						|  | output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | 
					
						
						|  | output_hidden_states = ( | 
					
						
						|  | output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
						
						|  | ) | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | encoder_states = () if output_hidden_states else None | 
					
						
						|  | all_attentions = () if output_attentions else None | 
					
						
						|  |  | 
					
						
						|  | hidden_states = inputs_embeds | 
					
						
						|  | for idx, encoder_layer in enumerate(self.layers): | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | encoder_states = encoder_states + (hidden_states,) | 
					
						
						|  | if self.gradient_checkpointing and self.training: | 
					
						
						|  |  | 
					
						
						|  | def create_custom_forward(module): | 
					
						
						|  | def custom_forward(*inputs): | 
					
						
						|  | return module(*inputs, output_attentions) | 
					
						
						|  |  | 
					
						
						|  | return custom_forward | 
					
						
						|  |  | 
					
						
						|  | layer_outputs = torch.utils.checkpoint.checkpoint( | 
					
						
						|  | create_custom_forward(encoder_layer), | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | layer_outputs = encoder_layer( | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = layer_outputs[0] | 
					
						
						|  |  | 
					
						
						|  | if output_attentions: | 
					
						
						|  | all_attentions = all_attentions + (layer_outputs[1],) | 
					
						
						|  |  | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | encoder_states = encoder_states + (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) | 
					
						
						|  | return BaseModelOutput( | 
					
						
						|  | last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MplugOwlVisionModel(PreTrainedModel): | 
					
						
						|  | main_input_name = "pixel_values" | 
					
						
						|  | _no_split_modules = ["MplugOwlVisionEncoderLayer"] | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.config = config | 
					
						
						|  | self.hidden_size = config.hidden_size | 
					
						
						|  |  | 
					
						
						|  | self.embeddings = MplugOwlVisionEmbeddings(config) | 
					
						
						|  | self.encoder = MplugOwlVisionEncoder(config) | 
					
						
						|  | self.post_layernorm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps) | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | pixel_values: Optional[torch.FloatTensor] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | ) -> Union[Tuple, BaseModelOutputWithPooling]: | 
					
						
						|  | r""" | 
					
						
						|  | Returns: | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  | output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | 
					
						
						|  | output_hidden_states = ( | 
					
						
						|  | output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
						
						|  | ) | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | if pixel_values is None: | 
					
						
						|  | raise ValueError("You have to specify pixel_values") | 
					
						
						|  |  | 
					
						
						|  | hidden_states = self.embeddings(pixel_values) | 
					
						
						|  |  | 
					
						
						|  | encoder_outputs = self.encoder( | 
					
						
						|  | inputs_embeds=hidden_states, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | last_hidden_state = encoder_outputs[0] | 
					
						
						|  | last_hidden_state = self.post_layernorm(last_hidden_state) | 
					
						
						|  |  | 
					
						
						|  | pooled_output = last_hidden_state[:, 0, :] | 
					
						
						|  | pooled_output = self.post_layernorm(pooled_output) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return (last_hidden_state, pooled_output) + encoder_outputs[1:] | 
					
						
						|  |  | 
					
						
						|  | return BaseModelOutputWithPooling( | 
					
						
						|  | last_hidden_state=last_hidden_state, | 
					
						
						|  | pooler_output=pooled_output, | 
					
						
						|  | hidden_states=encoder_outputs.hidden_states, | 
					
						
						|  | attentions=encoder_outputs.attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.embeddings | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MplugOwlVisualAbstractorMLP(nn.Module): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | in_features = config.hidden_size | 
					
						
						|  | self.act = nn.SiLU() | 
					
						
						|  |  | 
					
						
						|  | self.w1 = nn.Linear(in_features, config.intermediate_size) | 
					
						
						|  | self.w2 = nn.Linear(config.intermediate_size, in_features) | 
					
						
						|  | self.w3 = nn.Linear(in_features, config.intermediate_size) | 
					
						
						|  | self.ffn_ln = nn.LayerNorm(config.intermediate_size, eps=config.layer_norm_eps) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | hidden_states = self.act(self.w1(hidden_states)) * self.w3(hidden_states) | 
					
						
						|  | hidden_states = self.ffn_ln(hidden_states) | 
					
						
						|  | hidden_states = self.w2(hidden_states) | 
					
						
						|  | return hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MplugOwlVisualAbstractorMultiHeadAttention(nn.Module): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | if config.hidden_size % config.num_attention_heads != 0: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "The hidden size (%d) is not a multiple of the number of attention heads (%d)" | 
					
						
						|  | % (config.hidden_size, config.num_attention_heads) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.num_attention_heads = config.num_attention_heads | 
					
						
						|  | self.attention_head_size = int(config.hidden_size / config.num_attention_heads) | 
					
						
						|  | self.all_head_size = self.num_attention_heads * self.attention_head_size | 
					
						
						|  |  | 
					
						
						|  | self.query = nn.Linear(config.hidden_size, self.all_head_size) | 
					
						
						|  | self.key = nn.Linear(config.encoder_hidden_size, self.all_head_size) | 
					
						
						|  | self.value = nn.Linear(config.encoder_hidden_size, self.all_head_size) | 
					
						
						|  |  | 
					
						
						|  | self.dropout = nn.Dropout(config.attention_probs_dropout_prob) | 
					
						
						|  | self.save_attention = False | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | grids = config.grid_size | 
					
						
						|  | self.register_buffer( | 
					
						
						|  | 'q_pos_embed', | 
					
						
						|  | torch.from_numpy(get_1d_sincos_pos_embed_from_grid(config.hidden_size, np.arange(config.num_learnable_queries, dtype=np.float32))).float() | 
					
						
						|  | ) | 
					
						
						|  | self.register_buffer( | 
					
						
						|  | 'k_pos_embed', | 
					
						
						|  | torch.from_numpy(get_2d_sincos_pos_embed(config.hidden_size, grids, cls_token=True)).float() | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def save_attn_gradients(self, attn_gradients): | 
					
						
						|  | self.attn_gradients = attn_gradients | 
					
						
						|  |  | 
					
						
						|  | def get_attn_gradients(self): | 
					
						
						|  | return self.attn_gradients | 
					
						
						|  |  | 
					
						
						|  | def save_attention_map(self, attention_map): | 
					
						
						|  | self.attention_map = attention_map | 
					
						
						|  |  | 
					
						
						|  | def get_attention_map(self): | 
					
						
						|  | return self.attention_map | 
					
						
						|  |  | 
					
						
						|  | def transpose_for_scores(self, x): | 
					
						
						|  | new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) | 
					
						
						|  | x = x.view(*new_x_shape) | 
					
						
						|  | return x.permute(0, 2, 1, 3) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask=None, | 
					
						
						|  | head_mask=None, | 
					
						
						|  | encoder_hidden_states=None, | 
					
						
						|  | encoder_attention_mask=None, | 
					
						
						|  | past_key_value=None, | 
					
						
						|  | output_attentions=False, | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | qk_pos_embed = torch.cat([self.q_pos_embed, self.k_pos_embed], dim = 0).unsqueeze(0).to(dtype=hidden_states.dtype) | 
					
						
						|  |  | 
					
						
						|  | key_layer = self.transpose_for_scores(self.key(encoder_hidden_states + qk_pos_embed)) | 
					
						
						|  | value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) | 
					
						
						|  | attention_mask = encoder_attention_mask | 
					
						
						|  |  | 
					
						
						|  | mixed_query_layer = self.query(hidden_states + self.q_pos_embed.unsqueeze(0).to(dtype=hidden_states.dtype)) | 
					
						
						|  |  | 
					
						
						|  | query_layer = self.transpose_for_scores(mixed_query_layer) | 
					
						
						|  |  | 
					
						
						|  | past_key_value = (key_layer, value_layer) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) | 
					
						
						|  |  | 
					
						
						|  | attention_scores = attention_scores / math.sqrt(self.attention_head_size) | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  |  | 
					
						
						|  | attention_scores = attention_scores + attention_mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attention_probs = nn.Softmax(dim=-1)(attention_scores) | 
					
						
						|  |  | 
					
						
						|  | if self.save_attention: | 
					
						
						|  | self.save_attention_map(attention_probs) | 
					
						
						|  | attention_probs.register_hook(self.save_attn_gradients) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attention_probs_dropped = self.dropout(attention_probs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if head_mask is not None: | 
					
						
						|  | attention_probs_dropped = attention_probs_dropped * head_mask | 
					
						
						|  |  | 
					
						
						|  | context_layer = torch.matmul(attention_probs_dropped, value_layer) | 
					
						
						|  |  | 
					
						
						|  | context_layer = context_layer.permute(0, 2, 1, 3).contiguous() | 
					
						
						|  | new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) | 
					
						
						|  | context_layer = context_layer.view(*new_context_layer_shape) | 
					
						
						|  |  | 
					
						
						|  | outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) | 
					
						
						|  |  | 
					
						
						|  | outputs = outputs + (past_key_value,) | 
					
						
						|  | return outputs | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MplugOwlVisualAbstractorCrossOutput(nn.Module): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | dim = config.hidden_size | 
					
						
						|  | self.out_proj = nn.Linear(dim, dim, bias=True) | 
					
						
						|  | self.norm2 = nn.LayerNorm(dim) | 
					
						
						|  | self.mlp = MplugOwlVisualAbstractorMLP(config) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | input_tensor = input_tensor + self.out_proj(hidden_states) | 
					
						
						|  | input_tensor = input_tensor + self.mlp(self.norm2(input_tensor)) | 
					
						
						|  | return input_tensor | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MplugOwlVisualAbstractorAttention(nn.Module): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.attention = MplugOwlVisualAbstractorMultiHeadAttention(config) | 
					
						
						|  | self.output = MplugOwlVisualAbstractorCrossOutput(config) | 
					
						
						|  | self.pruned_heads = set() | 
					
						
						|  | self.norm1 = nn.LayerNorm(config.hidden_size) | 
					
						
						|  | self.normk = nn.LayerNorm(config.hidden_size) | 
					
						
						|  |  | 
					
						
						|  | def prune_heads(self, heads): | 
					
						
						|  | if len(heads) == 0: | 
					
						
						|  | return | 
					
						
						|  | heads, index = find_pruneable_heads_and_indices( | 
					
						
						|  | heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.attention.query = prune_linear_layer(self.attention.query, index) | 
					
						
						|  | self.attention.key = prune_linear_layer(self.attention.key, index) | 
					
						
						|  | self.attention.value = prune_linear_layer(self.attention.value, index) | 
					
						
						|  | self.output.dense = prune_linear_layer(self.output.out_proj, index, dim=1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) | 
					
						
						|  | self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads | 
					
						
						|  | self.pruned_heads = self.pruned_heads.union(heads) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | head_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | encoder_hidden_states: Optional[torch.FloatTensor] = None, | 
					
						
						|  | encoder_attention_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | 
					
						
						|  | output_attentions: Optional[bool] = False, | 
					
						
						|  | ) -> Tuple[torch.Tensor]: | 
					
						
						|  |  | 
					
						
						|  | hidden_states = self.norm1(hidden_states) | 
					
						
						|  | encoder_hidden_states = self.normk(encoder_hidden_states) | 
					
						
						|  | encoder_hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1) | 
					
						
						|  | encoder_attention_mask = torch.cat([attention_mask, encoder_attention_mask], dim=-1) | 
					
						
						|  | self_outputs = self.attention( | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask, | 
					
						
						|  | head_mask, | 
					
						
						|  | encoder_hidden_states, | 
					
						
						|  | encoder_attention_mask, | 
					
						
						|  | past_key_value, | 
					
						
						|  | output_attentions, | 
					
						
						|  | ) | 
					
						
						|  | attention_output = self.output(self_outputs[0], hidden_states) | 
					
						
						|  |  | 
					
						
						|  | outputs = (attention_output,) + self_outputs[1:] | 
					
						
						|  | return outputs | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MplugOwlVisualAbstractorLayer(nn.Module): | 
					
						
						|  | def __init__(self, config, layer_idx): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.chunk_size_feed_forward = config.chunk_size_feed_forward | 
					
						
						|  | self.seq_len_dim = 1 | 
					
						
						|  |  | 
					
						
						|  | self.layer_idx = layer_idx | 
					
						
						|  |  | 
					
						
						|  | self.crossattention = MplugOwlVisualAbstractorAttention(config) | 
					
						
						|  | self.has_cross_attention = True | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask=None, | 
					
						
						|  | head_mask=None, | 
					
						
						|  | encoder_hidden_states=None, | 
					
						
						|  | encoder_attention_mask=None, | 
					
						
						|  | output_attentions=False, | 
					
						
						|  | ): | 
					
						
						|  | if encoder_hidden_states is None: | 
					
						
						|  | raise ValueError("encoder_hidden_states must be given for cross-attention layers") | 
					
						
						|  | cross_attention_outputs = self.crossattention( | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask, | 
					
						
						|  | head_mask, | 
					
						
						|  | encoder_hidden_states, | 
					
						
						|  | encoder_attention_mask, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | ) | 
					
						
						|  | query_attention_output = cross_attention_outputs[0] | 
					
						
						|  |  | 
					
						
						|  | outputs = (query_attention_output,) | 
					
						
						|  | return outputs | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MplugOwlVisualAbstractorEncoder(nn.Module): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | self.layers = nn.ModuleList( | 
					
						
						|  | [MplugOwlVisualAbstractorLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] | 
					
						
						|  | ) | 
					
						
						|  | self.gradient_checkpointing = True | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask=None, | 
					
						
						|  | head_mask=None, | 
					
						
						|  | encoder_hidden_states=None, | 
					
						
						|  | encoder_attention_mask=None, | 
					
						
						|  | past_key_values=None, | 
					
						
						|  | output_attentions=False, | 
					
						
						|  | output_hidden_states=False, | 
					
						
						|  | return_dict=True, | 
					
						
						|  | ): | 
					
						
						|  | all_hidden_states = () if output_hidden_states else None | 
					
						
						|  |  | 
					
						
						|  | for i in range(self.config.num_hidden_layers): | 
					
						
						|  | layer_module = self.layers[i] | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | all_hidden_states = all_hidden_states + (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | layer_head_mask = head_mask[i] if head_mask is not None else None | 
					
						
						|  | past_key_value = past_key_values[i] if past_key_values is not None else None | 
					
						
						|  |  | 
					
						
						|  | if getattr(self.config, "gradient_checkpointing", False) and self.training: | 
					
						
						|  |  | 
					
						
						|  | def create_custom_forward(module): | 
					
						
						|  | def custom_forward(*inputs): | 
					
						
						|  | return module(*inputs, past_key_value, output_attentions) | 
					
						
						|  |  | 
					
						
						|  | return custom_forward | 
					
						
						|  |  | 
					
						
						|  | layer_outputs = torch.utils.checkpoint.checkpoint( | 
					
						
						|  | create_custom_forward(layer_module), | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask, | 
					
						
						|  | layer_head_mask, | 
					
						
						|  | encoder_hidden_states, | 
					
						
						|  | encoder_attention_mask, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | layer_outputs = layer_module( | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask, | 
					
						
						|  | layer_head_mask, | 
					
						
						|  | encoder_hidden_states, | 
					
						
						|  | encoder_attention_mask, | 
					
						
						|  | output_attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = layer_outputs[0] | 
					
						
						|  |  | 
					
						
						|  | return BaseModelOutput( | 
					
						
						|  | last_hidden_state=hidden_states, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MplugOwlVisualAbstractorModel(PreTrainedModel): | 
					
						
						|  | _no_split_modules = ["MplugOwlVisualAbstractorLayer"] | 
					
						
						|  | def __init__(self, config, language_hidden_size): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.config = config | 
					
						
						|  |  | 
					
						
						|  | self.encoder = MplugOwlVisualAbstractorEncoder(config) | 
					
						
						|  | self.visual_fc = torch.nn.Linear(config.hidden_size, language_hidden_size) | 
					
						
						|  | self.query_embeds = torch.nn.Parameter(torch.randn(1, config.num_learnable_queries, config.hidden_size)) | 
					
						
						|  | self.vit_eos = torch.nn.Parameter(torch.randn(1, 1, language_hidden_size)) | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def _prune_heads(self, heads_to_prune): | 
					
						
						|  | """ | 
					
						
						|  | Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base | 
					
						
						|  | class PreTrainedModel | 
					
						
						|  | """ | 
					
						
						|  | for layer, heads in heads_to_prune.items(): | 
					
						
						|  | self.encoder.layer[layer].attention.prune_heads(heads) | 
					
						
						|  |  | 
					
						
						|  | def get_extended_attention_mask( | 
					
						
						|  | self, | 
					
						
						|  | attention_mask: torch.Tensor, | 
					
						
						|  | input_shape: Tuple[int], | 
					
						
						|  | device: torch.device, | 
					
						
						|  | ) -> torch.Tensor: | 
					
						
						|  | """ | 
					
						
						|  | Makes broadcastable attention and causal masks so that future and masked tokens are ignored. | 
					
						
						|  |  | 
					
						
						|  | Arguments: | 
					
						
						|  | attention_mask (`torch.Tensor`): | 
					
						
						|  | Mask with ones indicating tokens to attend to, zeros for tokens to ignore. | 
					
						
						|  | input_shape (`Tuple[int]`): | 
					
						
						|  | The shape of the input to the model. | 
					
						
						|  | device: (`torch.device`): | 
					
						
						|  | The device of the input to the model. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | `torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if attention_mask.dim() == 3: | 
					
						
						|  | extended_attention_mask = attention_mask[:, None, :, :] | 
					
						
						|  | elif attention_mask.dim() == 2: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | extended_attention_mask = attention_mask[:, None, None, :] | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format( | 
					
						
						|  | input_shape, attention_mask.shape | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) | 
					
						
						|  | extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 | 
					
						
						|  | return extended_attention_mask | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | attention_mask=None, | 
					
						
						|  | head_mask=None, | 
					
						
						|  | encoder_hidden_states=None, | 
					
						
						|  | encoder_attention_mask=None, | 
					
						
						|  | past_key_values=None, | 
					
						
						|  | output_attentions=None, | 
					
						
						|  | output_hidden_states=None, | 
					
						
						|  | return_dict=None, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | encoder_hidden_states  (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, `optional`): | 
					
						
						|  | Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if | 
					
						
						|  | the model is configured as a decoder. | 
					
						
						|  | encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, `optional`): | 
					
						
						|  | Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in | 
					
						
						|  | the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: | 
					
						
						|  | - 1 for tokens that are **not masked**, | 
					
						
						|  | - 0 for tokens that are **masked**. | 
					
						
						|  | past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of: | 
					
						
						|  | shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and | 
					
						
						|  | value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are | 
					
						
						|  | used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key | 
					
						
						|  | value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape | 
					
						
						|  | `(batch_size, sequence_length)`. | 
					
						
						|  | """ | 
					
						
						|  | output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | 
					
						
						|  | output_hidden_states = ( | 
					
						
						|  | output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
						
						|  | ) | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | query_embeds = self.query_embeds.repeat(encoder_hidden_states.shape[0], 1, 1) | 
					
						
						|  | embedding_output = query_embeds | 
					
						
						|  | input_shape = embedding_output.size()[:-1] | 
					
						
						|  | batch_size, seq_length = input_shape | 
					
						
						|  | device = embedding_output.device | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is None: | 
					
						
						|  | attention_mask = torch.ones( | 
					
						
						|  | (query_embeds.shape[0], query_embeds.shape[1]), dtype=torch.long, device=query_embeds.device | 
					
						
						|  | ) | 
					
						
						|  | extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape, device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if encoder_hidden_states is not None: | 
					
						
						|  | if type(encoder_hidden_states) == list: | 
					
						
						|  | encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size() | 
					
						
						|  | else: | 
					
						
						|  | ( | 
					
						
						|  | encoder_batch_size, | 
					
						
						|  | encoder_sequence_length, | 
					
						
						|  | _, | 
					
						
						|  | ) = encoder_hidden_states.size() | 
					
						
						|  | encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) | 
					
						
						|  |  | 
					
						
						|  | if type(encoder_attention_mask) == list: | 
					
						
						|  | encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask] | 
					
						
						|  | elif encoder_attention_mask is None: | 
					
						
						|  | encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) | 
					
						
						|  | encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) | 
					
						
						|  | else: | 
					
						
						|  | encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) | 
					
						
						|  | else: | 
					
						
						|  | encoder_extended_attention_mask = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) | 
					
						
						|  |  | 
					
						
						|  | encoder_outputs = self.encoder( | 
					
						
						|  | embedding_output, | 
					
						
						|  | attention_mask=extended_attention_mask, | 
					
						
						|  | head_mask=head_mask, | 
					
						
						|  | encoder_hidden_states=encoder_hidden_states, | 
					
						
						|  | encoder_attention_mask=encoder_extended_attention_mask, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  | sequence_output = encoder_outputs[0] | 
					
						
						|  | pooled_output = sequence_output[:, 0, :] | 
					
						
						|  |  | 
					
						
						|  | sequence_output = self.visual_fc(sequence_output) | 
					
						
						|  | sequence_output = torch.cat([sequence_output, self.vit_eos.repeat(sequence_output.shape[0], 1, 1)], dim=1) | 
					
						
						|  |  | 
					
						
						|  | return BaseModelOutputWithPooling( | 
					
						
						|  | last_hidden_state=sequence_output, | 
					
						
						|  | pooler_output=pooled_output, | 
					
						
						|  | hidden_states=encoder_outputs.hidden_states, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  |