Update modeling_attn_mask_utils.py
Browse files- modeling_attn_mask_utils.py +88 -1
modeling_attn_mask_utils.py
CHANGED
|
@@ -244,4 +244,91 @@ def _create_4d_causal_attention_mask(
|
|
| 244 |
input_shape[0], input_shape[-1], key_value_length, dtype=dtype, device=device
|
| 245 |
)
|
| 246 |
|
| 247 |
-
return attention_mask
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 244 |
input_shape[0], input_shape[-1], key_value_length, dtype=dtype, device=device
|
| 245 |
)
|
| 246 |
|
| 247 |
+
return attention_mask
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
# Adapted from _prepare_4d_causal_attention_mask
|
| 251 |
+
def _prepare_4d_causal_attention_mask_for_sdpa(
|
| 252 |
+
attention_mask: Optional[torch.Tensor],
|
| 253 |
+
input_shape: Union[torch.Size, Tuple, List],
|
| 254 |
+
inputs_embeds: torch.Tensor,
|
| 255 |
+
past_key_values_length: int,
|
| 256 |
+
sliding_window: Optional[int] = None,
|
| 257 |
+
):
|
| 258 |
+
"""
|
| 259 |
+
Prepares the correct `attn_mask` argument to be used by `torch.nn.functional.scaled_dot_product_attention`.
|
| 260 |
+
|
| 261 |
+
In case no token is masked in the `attention_mask` argument, we simply set it to `None` for the cases `query_length == 1` and
|
| 262 |
+
`key_value_length == query_length`, and rely instead on SDPA `is_causal` argument to use causal/non-causal masks,
|
| 263 |
+
allowing to dispatch to the flash attention kernel (that can otherwise not be used if a custom `attn_mask` is passed).
|
| 264 |
+
"""
|
| 265 |
+
attn_mask_converter = AttentionMaskConverter(is_causal=True, sliding_window=sliding_window)
|
| 266 |
+
|
| 267 |
+
key_value_length = input_shape[-1] + past_key_values_length
|
| 268 |
+
batch_size, query_length = input_shape
|
| 269 |
+
|
| 270 |
+
# torch.jit.trace and torchdynamo with fullgraph=True are unable to capture the controlflow `is_causal=attention_mask is None and q_len > 1`
|
| 271 |
+
# used as an SDPA argument. We keep compatibility with these tracing tools by always using SDPA's `attn_mask` argument in case we are tracing.
|
| 272 |
+
# TODO: Fix this as well when using torchdynamo with fullgraph=True.
|
| 273 |
+
is_tracing = torch.jit.is_tracing()
|
| 274 |
+
|
| 275 |
+
if attention_mask is not None:
|
| 276 |
+
# 4d mask is passed through
|
| 277 |
+
if len(attention_mask.shape) == 4:
|
| 278 |
+
expected_shape = (input_shape[0], 1, input_shape[1], key_value_length)
|
| 279 |
+
if tuple(attention_mask.shape) != expected_shape:
|
| 280 |
+
raise ValueError(
|
| 281 |
+
f"Incorrect 4D attention_mask shape: {tuple(attention_mask.shape)}; expected: {expected_shape}."
|
| 282 |
+
)
|
| 283 |
+
else:
|
| 284 |
+
# if the 4D mask has correct shape - invert it and fill with negative infinity
|
| 285 |
+
inverted_mask = 1.0 - attention_mask.to(inputs_embeds.dtype)
|
| 286 |
+
attention_mask = inverted_mask.masked_fill(
|
| 287 |
+
inverted_mask.to(torch.bool), torch.finfo(inputs_embeds.dtype).min
|
| 288 |
+
)
|
| 289 |
+
return attention_mask
|
| 290 |
+
|
| 291 |
+
elif torch.all(attention_mask == 1):
|
| 292 |
+
if is_tracing:
|
| 293 |
+
pass
|
| 294 |
+
elif query_length == 1:
|
| 295 |
+
# For query_length == 1, causal attention and bi-directional attention are the same.
|
| 296 |
+
attention_mask = None
|
| 297 |
+
elif key_value_length == query_length:
|
| 298 |
+
attention_mask = None
|
| 299 |
+
else:
|
| 300 |
+
# Unfortunately, for query_length > 1 and key_value_length != query_length, we cannot generally ignore the attention mask, as SDPA causal mask generation
|
| 301 |
+
# may be wrong. We will set `is_causal=False` in SDPA and rely on Transformers attention_mask instead, hence not setting it to None here.
|
| 302 |
+
# Reference: https://github.com/pytorch/pytorch/issues/108108
|
| 303 |
+
pass
|
| 304 |
+
elif query_length > 1 and key_value_length != query_length:
|
| 305 |
+
# See the comment above (https://github.com/pytorch/pytorch/issues/108108).
|
| 306 |
+
# Ugly: we set it to True here to dispatch in the following controlflow to `to_causal_4d`.
|
| 307 |
+
attention_mask = True
|
| 308 |
+
elif is_tracing:
|
| 309 |
+
raise ValueError(
|
| 310 |
+
'Attention using SDPA can not be traced with torch.jit.trace when no attention_mask is provided. To solve this issue, please either load your model with the argument `attn_implementation="eager"` or pass an attention_mask input when tracing the model.'
|
| 311 |
+
)
|
| 312 |
+
|
| 313 |
+
if attention_mask is None:
|
| 314 |
+
expanded_4d_mask = None
|
| 315 |
+
elif attention_mask is True:
|
| 316 |
+
expanded_4d_mask = attn_mask_converter.to_causal_4d(
|
| 317 |
+
input_shape[0], input_shape[-1], key_value_length, dtype=inputs_embeds.dtype, device=inputs_embeds.device
|
| 318 |
+
)
|
| 319 |
+
else:
|
| 320 |
+
expanded_4d_mask = attn_mask_converter.to_4d(
|
| 321 |
+
attention_mask,
|
| 322 |
+
input_shape[-1],
|
| 323 |
+
dtype=inputs_embeds.dtype,
|
| 324 |
+
key_value_length=key_value_length,
|
| 325 |
+
)
|
| 326 |
+
|
| 327 |
+
# From PyTorch 2.1 onwards, F.scaled_dot_product_attention with the memory-efficient attention backend
|
| 328 |
+
# produces nans if sequences are completely unattended in the attention mask. Details: https://github.com/pytorch/pytorch/issues/110213
|
| 329 |
+
if query_length > 1:
|
| 330 |
+
expanded_4d_mask = AttentionMaskConverter._unmask_unattended(
|
| 331 |
+
expanded_4d_mask, attention_mask, unmasked_value=0.0
|
| 332 |
+
)
|
| 333 |
+
|
| 334 |
+
return expanded_4d_mask
|