Upload configuration_mplug_owl2.py with huggingface_hub
Browse files- configuration_mplug_owl2.py +332 -0
 
    	
        configuration_mplug_owl2.py
    ADDED
    
    | 
         @@ -0,0 +1,332 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            # Copyright (c) Alibaba.
         
     | 
| 2 | 
         
            +
            #
         
     | 
| 3 | 
         
            +
            # This source code is licensed under the license found in the
         
     | 
| 4 | 
         
            +
            # LICENSE file in the root directory of this source tree.
         
     | 
| 5 | 
         
            +
            import copy
         
     | 
| 6 | 
         
            +
            import os
         
     | 
| 7 | 
         
            +
            from typing import Union
         
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
            from transformers.configuration_utils import PretrainedConfig
         
     | 
| 10 | 
         
            +
            from transformers.models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
         
     | 
| 11 | 
         
            +
            from transformers.utils import logging
         
     | 
| 12 | 
         
            +
            from transformers.models.auto import CONFIG_MAPPING
         
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
            class LlamaConfig(PretrainedConfig):
         
     | 
| 16 | 
         
            +
                r"""
         
     | 
| 17 | 
         
            +
                This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
         
     | 
| 18 | 
         
            +
                model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
         
     | 
| 19 | 
         
            +
                defaults will yield a similar configuration to that of the LLaMA-7B.
         
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
                Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
         
     | 
| 22 | 
         
            +
                documentation from [`PretrainedConfig`] for more information.
         
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
                Args:
         
     | 
| 26 | 
         
            +
                    vocab_size (`int`, *optional*, defaults to 32000):
         
     | 
| 27 | 
         
            +
                        Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
         
     | 
| 28 | 
         
            +
                        `inputs_ids` passed when calling [`LlamaModel`]
         
     | 
| 29 | 
         
            +
                    hidden_size (`int`, *optional*, defaults to 4096):
         
     | 
| 30 | 
         
            +
                        Dimension of the hidden representations.
         
     | 
| 31 | 
         
            +
                    intermediate_size (`int`, *optional*, defaults to 11008):
         
     | 
| 32 | 
         
            +
                        Dimension of the MLP representations.
         
     | 
| 33 | 
         
            +
                    num_hidden_layers (`int`, *optional*, defaults to 32):
         
     | 
| 34 | 
         
            +
                        Number of hidden layers in the Transformer decoder.
         
     | 
| 35 | 
         
            +
                    num_attention_heads (`int`, *optional*, defaults to 32):
         
     | 
| 36 | 
         
            +
                        Number of attention heads for each attention layer in the Transformer decoder.
         
     | 
| 37 | 
         
            +
                    num_key_value_heads (`int`, *optional*):
         
     | 
| 38 | 
         
            +
                        This is the number of key_value heads that should be used to implement Grouped Query Attention. If
         
     | 
| 39 | 
         
            +
                        `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
         
     | 
| 40 | 
         
            +
                        `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
         
     | 
| 41 | 
         
            +
                        converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
         
     | 
| 42 | 
         
            +
                        by meanpooling all the original heads within that group. For more details checkout [this
         
     | 
| 43 | 
         
            +
                        paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
         
     | 
| 44 | 
         
            +
                        `num_attention_heads`.
         
     | 
| 45 | 
         
            +
                    hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
         
     | 
| 46 | 
         
            +
                        The non-linear activation function (function or string) in the decoder.
         
     | 
| 47 | 
         
            +
                    max_position_embeddings (`int`, *optional*, defaults to 2048):
         
     | 
| 48 | 
         
            +
                        The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048 tokens,
         
     | 
| 49 | 
         
            +
                        Llama 2 up to 4096, CodeLlama up to 16384.
         
     | 
| 50 | 
         
            +
                    initializer_range (`float`, *optional*, defaults to 0.02):
         
     | 
| 51 | 
         
            +
                        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
         
     | 
| 52 | 
         
            +
                    rms_norm_eps (`float`, *optional*, defaults to 1e-06):
         
     | 
| 53 | 
         
            +
                        The epsilon used by the rms normalization layers.
         
     | 
| 54 | 
         
            +
                    use_cache (`bool`, *optional*, defaults to `True`):
         
     | 
| 55 | 
         
            +
                        Whether or not the model should return the last key/values attentions (not used by all models). Only
         
     | 
| 56 | 
         
            +
                        relevant if `config.is_decoder=True`.
         
     | 
| 57 | 
         
            +
                    pad_token_id (`int`, *optional*):
         
     | 
| 58 | 
         
            +
                        Padding token id.
         
     | 
| 59 | 
         
            +
                    bos_token_id (`int`, *optional*, defaults to 1):
         
     | 
| 60 | 
         
            +
                        Beginning of stream token id.
         
     | 
| 61 | 
         
            +
                    eos_token_id (`int`, *optional*, defaults to 2):
         
     | 
| 62 | 
         
            +
                        End of stream token id.
         
     | 
| 63 | 
         
            +
                    pretraining_tp (`int`, *optional*, defaults to 1):
         
     | 
| 64 | 
         
            +
                        Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
         
     | 
| 65 | 
         
            +
                        document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
         
     | 
| 66 | 
         
            +
                        necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
         
     | 
| 67 | 
         
            +
                        issue](https://github.com/pytorch/pytorch/issues/76232).
         
     | 
| 68 | 
         
            +
                    tie_word_embeddings (`bool`, *optional*, defaults to `False`):
         
     | 
| 69 | 
         
            +
                        Whether to tie weight embeddings
         
     | 
| 70 | 
         
            +
                    rope_theta (`float`, *optional*, defaults to 10000.0):
         
     | 
| 71 | 
         
            +
                        The base period of the RoPE embeddings.
         
     | 
| 72 | 
         
            +
                    rope_scaling (`Dict`, *optional*):
         
     | 
| 73 | 
         
            +
                        Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
         
     | 
| 74 | 
         
            +
                        strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
         
     | 
| 75 | 
         
            +
                        `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
         
     | 
| 76 | 
         
            +
                        `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
         
     | 
| 77 | 
         
            +
                        these scaling strategies behave:
         
     | 
| 78 | 
         
            +
                        https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
         
     | 
| 79 | 
         
            +
                        experimental feature, subject to breaking API changes in future versions.
         
     | 
| 80 | 
         
            +
                    attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
         
     | 
| 81 | 
         
            +
                        Whether to use a bias in the query, key, value and output projection layers during self-attention.
         
     | 
| 82 | 
         
            +
             
     | 
| 83 | 
         
            +
             
     | 
| 84 | 
         
            +
                ```python
         
     | 
| 85 | 
         
            +
                >>> from transformers import LlamaModel, LlamaConfig
         
     | 
| 86 | 
         
            +
             
     | 
| 87 | 
         
            +
                >>> # Initializing a LLaMA llama-7b style configuration
         
     | 
| 88 | 
         
            +
                >>> configuration = LlamaConfig()
         
     | 
| 89 | 
         
            +
             
     | 
| 90 | 
         
            +
                >>> # Initializing a model from the llama-7b style configuration
         
     | 
| 91 | 
         
            +
                >>> model = LlamaModel(configuration)
         
     | 
| 92 | 
         
            +
             
     | 
| 93 | 
         
            +
                >>> # Accessing the model configuration
         
     | 
| 94 | 
         
            +
                >>> configuration = model.config
         
     | 
| 95 | 
         
            +
                ```"""
         
     | 
| 96 | 
         
            +
                model_type = "llama"
         
     | 
| 97 | 
         
            +
                keys_to_ignore_at_inference = ["past_key_values"]
         
     | 
| 98 | 
         
            +
             
     | 
| 99 | 
         
            +
                def __init__(
         
     | 
| 100 | 
         
            +
                    self,
         
     | 
| 101 | 
         
            +
                    vocab_size=32000,
         
     | 
| 102 | 
         
            +
                    hidden_size=4096,
         
     | 
| 103 | 
         
            +
                    intermediate_size=11008,
         
     | 
| 104 | 
         
            +
                    num_hidden_layers=32,
         
     | 
| 105 | 
         
            +
                    num_attention_heads=32,
         
     | 
| 106 | 
         
            +
                    num_key_value_heads=None,
         
     | 
| 107 | 
         
            +
                    hidden_act="silu",
         
     | 
| 108 | 
         
            +
                    max_position_embeddings=2048,
         
     | 
| 109 | 
         
            +
                    initializer_range=0.02,
         
     | 
| 110 | 
         
            +
                    rms_norm_eps=1e-6,
         
     | 
| 111 | 
         
            +
                    use_cache=True,
         
     | 
| 112 | 
         
            +
                    pad_token_id=None,
         
     | 
| 113 | 
         
            +
                    bos_token_id=1,
         
     | 
| 114 | 
         
            +
                    eos_token_id=2,
         
     | 
| 115 | 
         
            +
                    pretraining_tp=1,
         
     | 
| 116 | 
         
            +
                    tie_word_embeddings=False,
         
     | 
| 117 | 
         
            +
                    rope_theta=10000.0,
         
     | 
| 118 | 
         
            +
                    rope_scaling=None,
         
     | 
| 119 | 
         
            +
                    attention_bias=False,
         
     | 
| 120 | 
         
            +
                    **kwargs,
         
     | 
| 121 | 
         
            +
                ):
         
     | 
| 122 | 
         
            +
                    self.vocab_size = vocab_size
         
     | 
| 123 | 
         
            +
                    self.max_position_embeddings = max_position_embeddings
         
     | 
| 124 | 
         
            +
                    self.hidden_size = hidden_size
         
     | 
| 125 | 
         
            +
                    self.intermediate_size = intermediate_size
         
     | 
| 126 | 
         
            +
                    self.num_hidden_layers = num_hidden_layers
         
     | 
| 127 | 
         
            +
                    self.num_attention_heads = num_attention_heads
         
     | 
| 128 | 
         
            +
             
     | 
| 129 | 
         
            +
                    # for backward compatibility
         
     | 
| 130 | 
         
            +
                    if num_key_value_heads is None:
         
     | 
| 131 | 
         
            +
                        num_key_value_heads = num_attention_heads
         
     | 
| 132 | 
         
            +
             
     | 
| 133 | 
         
            +
                    self.num_key_value_heads = num_key_value_heads
         
     | 
| 134 | 
         
            +
                    self.hidden_act = hidden_act
         
     | 
| 135 | 
         
            +
                    self.initializer_range = initializer_range
         
     | 
| 136 | 
         
            +
                    self.rms_norm_eps = rms_norm_eps
         
     | 
| 137 | 
         
            +
                    self.pretraining_tp = pretraining_tp
         
     | 
| 138 | 
         
            +
                    self.use_cache = use_cache
         
     | 
| 139 | 
         
            +
                    self.rope_theta = rope_theta
         
     | 
| 140 | 
         
            +
                    self.rope_scaling = rope_scaling
         
     | 
| 141 | 
         
            +
                    self._rope_scaling_validation()
         
     | 
| 142 | 
         
            +
                    self.attention_bias = attention_bias
         
     | 
| 143 | 
         
            +
             
     | 
| 144 | 
         
            +
                    super().__init__(
         
     | 
| 145 | 
         
            +
                        pad_token_id=pad_token_id,
         
     | 
| 146 | 
         
            +
                        bos_token_id=bos_token_id,
         
     | 
| 147 | 
         
            +
                        eos_token_id=eos_token_id,
         
     | 
| 148 | 
         
            +
                        tie_word_embeddings=tie_word_embeddings,
         
     | 
| 149 | 
         
            +
                        **kwargs,
         
     | 
| 150 | 
         
            +
                    )
         
     | 
| 151 | 
         
            +
             
     | 
| 152 | 
         
            +
                def _rope_scaling_validation(self):
         
     | 
| 153 | 
         
            +
                    """
         
     | 
| 154 | 
         
            +
                    Validate the `rope_scaling` configuration.
         
     | 
| 155 | 
         
            +
                    """
         
     | 
| 156 | 
         
            +
                    if self.rope_scaling is None:
         
     | 
| 157 | 
         
            +
                        return
         
     | 
| 158 | 
         
            +
             
     | 
| 159 | 
         
            +
                    if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
         
     | 
| 160 | 
         
            +
                        raise ValueError(
         
     | 
| 161 | 
         
            +
                            "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
         
     | 
| 162 | 
         
            +
                            f"got {self.rope_scaling}"
         
     | 
| 163 | 
         
            +
                        )
         
     | 
| 164 | 
         
            +
                    rope_scaling_type = self.rope_scaling.get("type", None)
         
     | 
| 165 | 
         
            +
                    rope_scaling_factor = self.rope_scaling.get("factor", None)
         
     | 
| 166 | 
         
            +
                    if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
         
     | 
| 167 | 
         
            +
                        raise ValueError(
         
     | 
| 168 | 
         
            +
                            f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
         
     | 
| 169 | 
         
            +
                        )
         
     | 
| 170 | 
         
            +
                    if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
         
     | 
| 171 | 
         
            +
                        raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
         
     | 
| 172 | 
         
            +
             
     | 
| 173 | 
         
            +
                        
         
     | 
| 174 | 
         
            +
            class MplugOwlVisionConfig(PretrainedConfig):
         
     | 
| 175 | 
         
            +
                r"""
         
     | 
| 176 | 
         
            +
                This is the configuration class to store the configuration of a [`MplugOwlVisionModel`]. It is used to instantiate
         
     | 
| 177 | 
         
            +
                a
         
     | 
| 178 | 
         
            +
                 mPLUG-Owl vision encoder according to the specified arguments, defining the model architecture. Instantiating a
         
     | 
| 179 | 
         
            +
                 configuration defaults will yield a similar configuration to that of the mPLUG-Owl
         
     | 
| 180 | 
         
            +
                 [x-plug/x_plug-llama-7b](https://huggingface.co/x-plug/x_plug-llama-7b) architecture.
         
     | 
| 181 | 
         
            +
             
     | 
| 182 | 
         
            +
                 Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
         
     | 
| 183 | 
         
            +
                 documentation from [`PretrainedConfig`] for more information.
         
     | 
| 184 | 
         
            +
             
     | 
| 185 | 
         
            +
                 Args:
         
     | 
| 186 | 
         
            +
                     hidden_size (`int`, *optional*, defaults to 768):
         
     | 
| 187 | 
         
            +
                         Dimensionality of the encoder layers and the pooler layer.
         
     | 
| 188 | 
         
            +
                     intermediate_size (`int`, *optional*, defaults to 3072):
         
     | 
| 189 | 
         
            +
                         Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
         
     | 
| 190 | 
         
            +
                     num_hidden_layers (`int`, *optional*, defaults to 12):
         
     | 
| 191 | 
         
            +
                         Number of hidden layers in the Transformer encoder.
         
     | 
| 192 | 
         
            +
                     num_attention_heads (`int`, *optional*, defaults to 12):
         
     | 
| 193 | 
         
            +
                         Number of attention heads for each attention layer in the Transformer encoder.
         
     | 
| 194 | 
         
            +
                     image_size (`int`, *optional*, defaults to 224):
         
     | 
| 195 | 
         
            +
                         The size (resolution) of each image.
         
     | 
| 196 | 
         
            +
                     patch_size (`int`, *optional*, defaults to 32):
         
     | 
| 197 | 
         
            +
                         The size (resolution) of each patch.
         
     | 
| 198 | 
         
            +
                     hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
         
     | 
| 199 | 
         
            +
                         The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
         
     | 
| 200 | 
         
            +
                         `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
         
     | 
| 201 | 
         
            +
                     layer_norm_eps (`float`, *optional*, defaults to 1e-5):
         
     | 
| 202 | 
         
            +
                         The epsilon used by the layer normalization layers.
         
     | 
| 203 | 
         
            +
                     attention_dropout (`float`, *optional*, defaults to 0.0):
         
     | 
| 204 | 
         
            +
                         The dropout ratio for the attention probabilities.
         
     | 
| 205 | 
         
            +
                     initializer_range (`float`, *optional*, defaults to 0.02):
         
     | 
| 206 | 
         
            +
                         The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
         
     | 
| 207 | 
         
            +
                     initializer_factor (`float`, *optional*, defaults to 1):
         
     | 
| 208 | 
         
            +
                         A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
         
     | 
| 209 | 
         
            +
                         testing).
         
     | 
| 210 | 
         
            +
             
     | 
| 211 | 
         
            +
             
     | 
| 212 | 
         
            +
                 ```"""
         
     | 
| 213 | 
         
            +
             
     | 
| 214 | 
         
            +
                model_type = "mplug_owl_vision_model"
         
     | 
| 215 | 
         
            +
             
     | 
| 216 | 
         
            +
                def __init__(
         
     | 
| 217 | 
         
            +
                    self,
         
     | 
| 218 | 
         
            +
                    hidden_size=1024,
         
     | 
| 219 | 
         
            +
                    intermediate_size=4096,
         
     | 
| 220 | 
         
            +
                    projection_dim=768,
         
     | 
| 221 | 
         
            +
                    num_hidden_layers=24,
         
     | 
| 222 | 
         
            +
                    num_attention_heads=16,
         
     | 
| 223 | 
         
            +
                    num_channels=3,
         
     | 
| 224 | 
         
            +
                    image_size=448,
         
     | 
| 225 | 
         
            +
                    patch_size=14,
         
     | 
| 226 | 
         
            +
                    hidden_act="quick_gelu",
         
     | 
| 227 | 
         
            +
                    layer_norm_eps=1e-6,
         
     | 
| 228 | 
         
            +
                    attention_dropout=0.0,
         
     | 
| 229 | 
         
            +
                    initializer_range=0.02,
         
     | 
| 230 | 
         
            +
                    initializer_factor=1.0,
         
     | 
| 231 | 
         
            +
                    use_flash_attn=False,
         
     | 
| 232 | 
         
            +
                    **kwargs,
         
     | 
| 233 | 
         
            +
                ):
         
     | 
| 234 | 
         
            +
                    super().__init__(**kwargs)
         
     | 
| 235 | 
         
            +
                    self.hidden_size = hidden_size
         
     | 
| 236 | 
         
            +
                    self.intermediate_size = intermediate_size
         
     | 
| 237 | 
         
            +
                    self.projection_dim = projection_dim
         
     | 
| 238 | 
         
            +
                    self.num_hidden_layers = num_hidden_layers
         
     | 
| 239 | 
         
            +
                    self.num_attention_heads = num_attention_heads
         
     | 
| 240 | 
         
            +
                    self.num_channels = num_channels
         
     | 
| 241 | 
         
            +
                    self.patch_size = patch_size
         
     | 
| 242 | 
         
            +
                    self.image_size = image_size
         
     | 
| 243 | 
         
            +
                    self.initializer_range = initializer_range
         
     | 
| 244 | 
         
            +
                    self.initializer_factor = initializer_factor
         
     | 
| 245 | 
         
            +
                    self.attention_dropout = attention_dropout
         
     | 
| 246 | 
         
            +
                    self.layer_norm_eps = layer_norm_eps
         
     | 
| 247 | 
         
            +
                    self.hidden_act = hidden_act
         
     | 
| 248 | 
         
            +
                    self.use_flash_attn = use_flash_attn
         
     | 
| 249 | 
         
            +
             
     | 
| 250 | 
         
            +
                @classmethod
         
     | 
| 251 | 
         
            +
                def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
         
     | 
| 252 | 
         
            +
                    config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
         
     | 
| 253 | 
         
            +
             
     | 
| 254 | 
         
            +
                    # get the vision config dict if we are loading from MplugOwlConfig
         
     | 
| 255 | 
         
            +
                    if config_dict.get("model_type") == "mplug-owl":
         
     | 
| 256 | 
         
            +
                        config_dict = config_dict["vision_config"]
         
     | 
| 257 | 
         
            +
             
     | 
| 258 | 
         
            +
                    if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
         
     | 
| 259 | 
         
            +
                        logger.warning(
         
     | 
| 260 | 
         
            +
                            f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
         
     | 
| 261 | 
         
            +
                            f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
         
     | 
| 262 | 
         
            +
                        )
         
     | 
| 263 | 
         
            +
             
     | 
| 264 | 
         
            +
                    return cls.from_dict(config_dict, **kwargs)
         
     | 
| 265 | 
         
            +
             
     | 
| 266 | 
         
            +
             
     | 
| 267 | 
         
            +
            class MplugOwlVisualAbstractorConfig(PretrainedConfig):
         
     | 
| 268 | 
         
            +
                model_type = "mplug_owl_visual_abstract"
         
     | 
| 269 | 
         
            +
             
     | 
| 270 | 
         
            +
                def __init__(
         
     | 
| 271 | 
         
            +
                    self,
         
     | 
| 272 | 
         
            +
                    num_learnable_queries=64,
         
     | 
| 273 | 
         
            +
                    hidden_size=1024,
         
     | 
| 274 | 
         
            +
                    num_hidden_layers=6,
         
     | 
| 275 | 
         
            +
                    num_attention_heads=16,
         
     | 
| 276 | 
         
            +
                    intermediate_size=2816,
         
     | 
| 277 | 
         
            +
                    attention_probs_dropout_prob=0.,
         
     | 
| 278 | 
         
            +
                    initializer_range=0.02,
         
     | 
| 279 | 
         
            +
                    layer_norm_eps=1e-6,
         
     | 
| 280 | 
         
            +
                    encoder_hidden_size=1024,
         
     | 
| 281 | 
         
            +
                    grid_size=None,
         
     | 
| 282 | 
         
            +
                    **kwargs,
         
     | 
| 283 | 
         
            +
                ):
         
     | 
| 284 | 
         
            +
                    super().__init__(**kwargs)
         
     | 
| 285 | 
         
            +
                    self.hidden_size = hidden_size
         
     | 
| 286 | 
         
            +
                    self.num_learnable_queries = num_learnable_queries
         
     | 
| 287 | 
         
            +
                    self.num_hidden_layers = num_hidden_layers
         
     | 
| 288 | 
         
            +
                    self.num_attention_heads = num_attention_heads
         
     | 
| 289 | 
         
            +
                    self.intermediate_size = intermediate_size
         
     | 
| 290 | 
         
            +
                    self.attention_probs_dropout_prob = attention_probs_dropout_prob
         
     | 
| 291 | 
         
            +
                    self.initializer_range = initializer_range
         
     | 
| 292 | 
         
            +
                    self.layer_norm_eps = layer_norm_eps
         
     | 
| 293 | 
         
            +
                    self.encoder_hidden_size = encoder_hidden_size
         
     | 
| 294 | 
         
            +
                    self.grid_size = grid_size if grid_size else 32
         
     | 
| 295 | 
         
            +
             
     | 
| 296 | 
         
            +
                @classmethod
         
     | 
| 297 | 
         
            +
                def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
         
     | 
| 298 | 
         
            +
                    config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
         
     | 
| 299 | 
         
            +
             
     | 
| 300 | 
         
            +
                    # get the visual_abstractor config dict if we are loading from MplugOwlConfig
         
     | 
| 301 | 
         
            +
                    if config_dict.get("model_type") == "mplug-owl":
         
     | 
| 302 | 
         
            +
                        config_dict = config_dict["abstractor_config"]
         
     | 
| 303 | 
         
            +
             
     | 
| 304 | 
         
            +
                    if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
         
     | 
| 305 | 
         
            +
                        logger.warning(
         
     | 
| 306 | 
         
            +
                            f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
         
     | 
| 307 | 
         
            +
                            f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
         
     | 
| 308 | 
         
            +
                        )
         
     | 
| 309 | 
         
            +
             
     | 
| 310 | 
         
            +
                    return cls.from_dict(config_dict, **kwargs)
         
     | 
| 311 | 
         
            +
             
     | 
| 312 | 
         
            +
             
     | 
| 313 | 
         
            +
             
     | 
| 314 | 
         
            +
            DEFAULT_VISUAL_CONFIG = {
         
     | 
| 315 | 
         
            +
                "visual_model": MplugOwlVisionConfig().to_dict(),
         
     | 
| 316 | 
         
            +
                "visual_abstractor": MplugOwlVisualAbstractorConfig().to_dict()
         
     | 
| 317 | 
         
            +
            }
         
     | 
| 318 | 
         
            +
             
     | 
| 319 | 
         
            +
            class MPLUGOwl2Config(LlamaConfig):
         
     | 
| 320 | 
         
            +
                model_type = "mplug_owl2"
         
     | 
| 321 | 
         
            +
                def __init__(self, visual_config=None, **kwargs):
         
     | 
| 322 | 
         
            +
                    if visual_config is None:
         
     | 
| 323 | 
         
            +
                        self.visual_config = DEFAULT_VISUAL_CONFIG
         
     | 
| 324 | 
         
            +
                    else:
         
     | 
| 325 | 
         
            +
                        self.visual_config = visual_config
         
     | 
| 326 | 
         
            +
                    
         
     | 
| 327 | 
         
            +
                    super().__init__(
         
     | 
| 328 | 
         
            +
                        **kwargs,
         
     | 
| 329 | 
         
            +
                    )
         
     | 
| 330 | 
         
            +
                    
         
     | 
| 331 | 
         
            +
            if __name__ == "__main__":
         
     | 
| 332 | 
         
            +
                print(MplugOwlVisionConfig().to_dict())
         
     |