Update README.md
Browse files
README.md
CHANGED
@@ -4,14 +4,16 @@ tags:
|
|
4 |
- sentence-transformers
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
7 |
-
|
|
|
|
|
8 |
---
|
9 |
|
10 |
-
#
|
11 |
|
12 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
13 |
|
14 |
-
|
15 |
|
16 |
## Usage (Sentence-Transformers)
|
17 |
|
@@ -27,62 +29,19 @@ Then you can use the model like this:
|
|
27 |
from sentence_transformers import SentenceTransformer
|
28 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
29 |
|
30 |
-
model = SentenceTransformer('
|
31 |
embeddings = model.encode(sentences)
|
32 |
print(embeddings)
|
33 |
```
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
## Evaluation Results
|
38 |
-
|
39 |
-
<!--- Describe how your model was evaluated -->
|
40 |
-
|
41 |
-
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
42 |
-
|
43 |
-
|
44 |
-
## Training
|
45 |
-
The model was trained with the parameters:
|
46 |
-
|
47 |
-
**DataLoader**:
|
48 |
-
|
49 |
-
`torch.utils.data.dataloader.DataLoader` of length 296 with parameters:
|
50 |
-
```
|
51 |
-
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
52 |
-
```
|
53 |
-
|
54 |
-
**Loss**:
|
55 |
-
|
56 |
-
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
|
57 |
-
|
58 |
-
Parameters of the fit()-Method:
|
59 |
```
|
60 |
-
{
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
|
66 |
-
"optimizer_params": {
|
67 |
-
"lr": 2e-05
|
68 |
-
},
|
69 |
-
"scheduler": "WarmupLinear",
|
70 |
-
"steps_per_epoch": null,
|
71 |
-
"warmup_steps": 296,
|
72 |
-
"weight_decay": 0.01
|
73 |
}
|
74 |
```
|
75 |
|
76 |
|
77 |
-
## Full Model Architecture
|
78 |
-
```
|
79 |
-
SentenceTransformer(
|
80 |
-
(0): Transformer({'max_seq_length': 514, 'do_lower_case': False}) with Transformer model: BertModel
|
81 |
-
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
82 |
-
(2): Normalize()
|
83 |
-
)
|
84 |
-
```
|
85 |
-
|
86 |
-
## Citing & Authors
|
87 |
-
|
88 |
-
<!--- Describe where people can find more information -->
|
|
|
4 |
- sentence-transformers
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
7 |
+
- mitre_ttps
|
8 |
+
- security
|
9 |
+
- adversarial-threat-annotation
|
10 |
---
|
11 |
|
12 |
+
# SentSecBert_10k_AllDataSplit
|
13 |
|
14 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
15 |
|
16 |
+
This is a model used in our work "Semantic Ranking for Automated Adversarial Technique Annotation in Security Text". The code is available at: [https://github.com/qcri/Text2TTP](https://github.com/qcri/Text2TTP)
|
17 |
|
18 |
## Usage (Sentence-Transformers)
|
19 |
|
|
|
29 |
from sentence_transformers import SentenceTransformer
|
30 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
31 |
|
32 |
+
model = SentenceTransformer('SentSecBert')
|
33 |
embeddings = model.encode(sentences)
|
34 |
print(embeddings)
|
35 |
```
|
36 |
|
37 |
+
## Citation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
```
|
39 |
+
@article{kumarasinghe2024semantic,
|
40 |
+
title={Semantic Ranking for Automated Adversarial Technique Annotation in Security Text},
|
41 |
+
author={Kumarasinghe, Udesh and Lekssays, Ahmed and Sencar, Husrev Taha and Boughorbel, Sabri and Elvitigala, Charitha and Nakov, Preslav},
|
42 |
+
journal={arXiv preprint arXiv:2403.17068},
|
43 |
+
year={2024}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
}
|
45 |
```
|
46 |
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|